精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-ln(x+1)
(I)求函数f(x)的单调区间;
(II)证明:e+e
1
2
+e
1
3
+…+e
1
n
≥ln(n+1)(n∈N*,e为常数)
x>-1,f′(x)=ex-
1
x+1

(I)由于f′(x)=ex-
1
x+1
在(-1,+∞)上是增函数,且f′(0)=0,
∴当x∈(0,+∞)时,f′(x)>0,当x∈(-1,0)时,f′(x)<0,
故函数f(x)的单调增区间(0,+∞),函数f(x)的单调减区间(-1,0).
(II)由(I)知当x=0时,f(x)取得最小值,即f(x)≥1,
∴ex-ln(x+1)≥1,即ex≥ln(x+1)+1,
取x=
1
n
,则e
1
n
≥ln(
1
n
+1)+1=ln(n+1)-lnn+1

于是e≥ln2-ln1+1,
e
1
2
≥ln3-ln2+1,
e
1
3
≥ln4-ln3+1,

e
1
n
≥ln(n+1)-lnn+1.
相加得,e+e
1
2
+e
1
3
+…+e
1
n
≥ln(n+1)(n∈N*,e为常数)
,得证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案