| 甲 | 乙 | 原料限额 | |
| A(吨) | 3 | 2 | 12 |
| B(吨) | 1 | 2 | 8 |
分析 设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.
解答
解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,
则 $\left\{\begin{array}{l}{3x+2y≤12}\\{x+2y≤8}\\{x≥0,y≥0}\end{array}\right.$,
目标函数为 z=3x+4y.
作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.
由z=3x+4y得y=-$\frac{3}{4}$x+$\frac{z}{4}$,
平移直线y=-$\frac{3}{4}$x+$\frac{z}{4}$,由图象可知当直线y=-$\frac{3}{4}$x+$\frac{z}{4}$,
经过点B时,直线y=-$\frac{3}{4}$x+$\frac{z}{4}$的截距最大,
此时z最大,
解方程组$\left\{\begin{array}{l}{3x+2y=12}\\{x+2y=8}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,
即B的坐标为x=2,y=3,
∴zmax=3x+4y=6+12=18.
则每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元.
点评 此题考查了线性规划的应用,建立约束条件和目标函数,利用数形结合是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,-$\frac{1}{3}$) | B. | [-2,$\frac{1}{3}$) | C. | (-$\frac{1}{3}$,1] | D. | (1,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com