精英家教网 > 高中数学 > 题目详情
已知定义域为的函数同时满足以下三个条件:
①对任意的,总有

③当,且时,成立.
称这样的函数为“友谊函数”.
请解答下列各题:
(1)已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?请给出理由;
(3)已知为“友谊函数”,假定存在,使得,且,求证:.
(1);(2)上为友谊函数;(3)证明过程见解析.

试题分析:(1)赋值可考虑取,代入,可得,由已知,可得.
(2)要判断函数在区间上是否为“友谊函数,只要检验函数上是否满足(1);(2);(3),且时,有即可.
(3)由,则,故有,即得结论成立;
(1)令,则.由③,得,即.又由①,得,所以.
(2) 是友谊函数.任取,有.则.即.又,故上为友谊函数.
(3)取,则.因此,.假设,若,则.若,则.都与题设矛盾,因此.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设二次函数
(1)求函数的最小值;
(2)问是否存在这样的正数,当时,,且的值域为?若存在,求出所有的的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则下列哪个函数与表示同一个函数(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂生产A产品的年固定成本为250万元,若A产品的年产量为万件,则需另投入成本(万元)。已知A产品年产量不超过80万件时,;A产品年产量大于80万件时,。因设备限制,A产品年产量不超过200万件。现已知A产品的售价为50元/件,且年内生产的A产品能全部销售完。设该厂生产A产品的年利润为L(万元)。
(1)写出L关于的函数解析式
(2)当年产量为多少时,该厂生产A产品所获的利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数满足:,则=__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数的最小值为
⑴求函数的解析式;
⑵设,若上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下了函数中,满足“”的单调递增函数是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为(单位:万元),当年产量小于80万件时,;当年产量不小于80万件时,.假设每万件该产品的售价为50万元,且该厂当年生产的该产品能全部销售完.
(1)写出年利润(万元)关于年产量(万件)的函数关系式;
(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是(  )
A.f(5)=1
B.方程f(x)=有且仅有一个解
C.函数f(x)是周期函数
D.函数f(x)是减函数

查看答案和解析>>

同步练习册答案