精英家教网 > 高中数学 > 题目详情

如图,三棱锥中,平面中点.

(1)求证:平面
(2)求二面角的正弦值.

(1)详见解析;(2)二面角的正弦值为.

解析试题分析:(1)要证直线平面,只需证垂直于平面内的两条相交直线,首先在等腰三角形中利用三线合一的原理得到,通过证明平面,得到,再结合直线与平面垂直的判定定理证明平面;(2)解法一是利用三垂线法来求二面角的正弦值,利用平面,从点的中位线,得到平面,再过点,并连接,先利用直线平面来说明为二面角的平面角,最后在直角三角形中来计算的正弦值;解法二是以点为原点,的方向分别为轴、轴的正方向建立空间直角坐标系,利用空间向量法来求二面角的余弦值,进而求出它的正弦值.
试题解析:(1)平面平面
平面平面平面
平面
的中点,
平面平面平面
(2)方法一:取的中点,连接,则.
由已知得,过为垂足,连接
由(1)知,平面平面
,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图长方体中,底面是正方形,的中点,是棱上任意一点.

⑴求证:
⑵如果,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知多面体中,平面平面的中点.

(1)求证:
(2)求直线与平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

查看答案和解析>>

同步练习册答案