精英家教网 > 高中数学 > 题目详情
判断并证明:函数f(x)=
2x+3
x+1
在(-1,﹢∞)上的单调性.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:根据分式函数的性质,判断函数的单调性,然后根据函数单调性的定义进行证明即可.
解答: 解:f(x)=
2x+3
x+1
=
2(x+1)+1
x+1
=2+
1
x+1
,在(-1,﹢∞)上的单调递减.
任意设-1<x1<x2
则f(x1)-f(x2)=
1
x1+1
-
1
x2+1
=
x2-x1
(x1+1)(x2+1)

∵-1<x1<x2
∴x2-x1>0,
则f(x1)-f(x2)>0,
∴f(x1)>f(x2),
即函数f(x)=
2x+3
x+1
在(-1,﹢∞)上的单调递减.
点评:本题主要考查函数单调性的判断和证明,利用函数单调性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在边长为2的正方形内有一内切圆,现从正方形内取一点P,则点P在圆内的概率为(  )
A、
4-π
4
B、
4
π
C、
π
4
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学有4位学生申请A,B,C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有2人申请A大学的概率;
(2)求被申请大学的个数X的概率分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数y=-x2+2x+3的图象,并指出该函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与x轴、y轴的正半轴分别交于A、B两点,若△OAB的面积为
3
(其中点O是椭圆的中心),椭圆的离心率为
1
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)请问:是否存在过点P(0,2
3
)
的直线l与椭圆相交于M,N两点,使得点N恰好是线段PM的中点,若存在,请求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,O为坐标原点,F是一个焦点,A是一个顶点.若椭圆的长轴长是6,且cos∠OFA=
2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)求点R(0,1)与椭圆C上的点N之间的最大距离;
(Ⅲ)设Q是椭圆C上的一点,过Q的直线l交x轴于点P(-3,0),交y轴于点M.若
MQ
=2
QP
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数f(x)=
ax
1-x2
(-1<x<1,a∈R)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosx,
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b

(Ⅰ)求f(x)的表达式;
(Ⅱ)用五点作图法作出f(x)在一个周期内的图象;
(Ⅲ)求f(x) 在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,等腰Rt△ABC直角边的两端点A,B分别在x轴、y轴的正半轴上移动,若|AB|=2,则
OB
OC
的最大值是
 

查看答案和解析>>

同步练习册答案