精英家教网 > 高中数学 > 题目详情
16.已知在△ABC中,角A,B,C的对边分别为a,b,c,bsinA+acos(B+C)=0且$c=2,sinC=\frac{3}{5}$,
(1)求证:$B-A=\frac{π}{2}$;
(2)求a+b的值.

分析 (1)根据正弦定理可得和诱导公式即可证明,
(2)由诱导公式和二倍角公式以及同角的三角函数的关系和正弦定理即可求出

解答 (1)证明:∵bsinA+acos(B+C)=0,
∴bsinA-acosA=0,
又由正弦定理得sinAcosA-sinBsinA=0,
∵sinA≠0,
即cosA=sinB.
∴cosA=sin($\frac{π}{2}$+A)=sinB,
∴$\frac{π}{2}$+A+B=π,
即C=A+B=$\frac{π}{2}$,或B=$\frac{π}{2}$+A,
即B-A=$\frac{π}{2}$,
又sinC=$\frac{3}{5}$,
∴B-A=$\frac{π}{2}$,
(2)由于$c=2,sinC=\frac{3}{5}$,C为锐角,
则cosC=sin($\frac{π}{2}$-C)=sin2A=2sinAcosA=$\frac{4}{5}$,
则1+2sinAcosA=(sinA+cosA)2=$\frac{9}{5}$,
∴sinA+cosA=$\frac{3\sqrt{5}}{5}$,
∴a+b=$\frac{c}{sinc}$(sinA+cosA)=$\frac{10}{3}$×$\frac{3\sqrt{5}}{5}$=2$\sqrt{5}$.

点评 本题考查了正弦定理和二倍角公式以及同角的三角函数的关系,考查了学生的运算能力和转化能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图所示,在直角梯形BECD中,A为线段CE上一点,DC⊥EC,∠BAE=15°,∠DAC=60°,∠DBA=30°,AB=24m,则为CD=6$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i是虚数单位,则i+|i|在复平面上对应的点是(  )
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=$\frac{\sqrt{2}}{2}$(sin 17°+cos 17°),b=2cos213°-1,c=sin 37°•sin 67°+sin 53°sin 23°,则(  )
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C:y2=4x,M:(x-1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.
(Ⅰ)若$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求证:直线l恒过定点,并求出定点坐标;
(Ⅱ)若直线l与曲线C1相切,M(1,0),求$\overrightarrow{MA}•\overrightarrow{MB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(文)函数y=Asin(ωx+φ)(A>0,ω>0,$0≤φ≤\frac{π}{2}$)在x∈(0,9π)内只能取到一个最大值和一个最小值,且当x=π时,y有最大值4,当x=8π时,y有最小值-4.
(1)求出此函数的解析式以及它的单调递增区间;
(2)是否存在实数m,满足不等式$Asin(ω\sqrt{m+1}+φ)>Asin(ω\sqrt{-m+4}+φ)$?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)(x∈R)满足f(-x)=4-f(x),函数$g(x)=\frac{x-2}{x-1}+\frac{x}{x+1}$,若曲线y=f(x)与y=g(x)图象的交点分别为(x1,y1),(x2,y2),(x3,y3),…,(xm,ym),则$\sum_{i=1}^m{({x_i}+{y_i})=}$2m(结果用含有m的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若5把钥匙中只有两把能打开某锁,则从中任取一把钥匙能将该锁打开的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\vec a=(-1,3),\vec b=(3,4)$,则$\vec a$在$\vec b$方向上的投影为$\frac{9}{5}$.

查看答案和解析>>

同步练习册答案