精英家教网 > 高中数学 > 题目详情

已知椭圆x2+(m+3)y2m(m>0)的离心率e,求m的值及椭圆的长轴和短轴的长及顶点坐标.

解:椭圆方程可化为=1.
因为m>0,所以m>.
a2mb2c.
e,解得m=1.
所以a=1,b,椭圆的标准方程为x2=1.
所以椭圆的长轴长为2,短轴长为1,
四个顶点的坐标分别为
A1(-1,0),A2(1,0),B1(0,-),B2(0,)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线C:2x2-y2=2与点P(1,2).求过点P(1,2)的直线l的斜率k的取值范围,使l与C只有一个交点;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(18分)如图,直线与抛物线交于两点,与轴相交于点,且.
(1)求证:点的坐标为
(2)求证:
(3)求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点  在直线上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 (本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
AB两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一
个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线的参数方程为,则直线的斜率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知斜率为1的直线 过椭圆的右焦点,交椭圆于两点,求

查看答案和解析>>

同步练习册答案