精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=3x+a的反函数y=f-1(x),若函数y=f-1(x)的图象经过(4,1),则实数a的值为1.

分析 根据反函数的性质可知:原函数与反函数的图象关于y=x对称,利用对称关系可得答案.

解答 解:f(x)=3x+a的反函数y=f-1(x),
∵函数y=f-1(x)的图象经过(4,1),原函数与反函数的图象关于y=x对称
∴f(x)=3x+a的图象经过(1,4),
即3+a=4,
解得:a=1.
故答案为:1.

点评 本题考查了原函数与反函数的图象的关系,其象关于y=x对称,即坐标也对称,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的导数,e为自然对数的底数)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我校教育处连续30天对同学们的着装进行检查,着装不合格的人数为如图所示的茎叶图,则中位数,众数,极差分别是(  )
A.44,45,56B.44,43,57C.44,43,56D.45,43,57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某班50人的一次竞赛成绩的频数分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用各组区间中点值,可估计本次比赛该班的平均分为(  )
A.56B.68C.78D.82

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥S-ABC中,△ABC为直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求证:AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f(f(a))=2,则实数a的值为-$\sqrt{3}$,$\frac{1}{2}$,16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合M=[0,$\frac{1}{2}$),N=[$\frac{1}{2}$,1],函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈M}\\{2(1-x),x∈N}\end{array}\right.$.若x0∈M且f(f(x0))∈M,则x0的取值范围为(  )
A.(0,$\frac{1}{4}$]B.[0,$\frac{3}{8}$]C.($\frac{1}{4}$,$\frac{1}{2}$]D.($\frac{1}{4}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给定空间中的直线l与平面α,则“直线l与平面α垂直”是“直线l垂直于平面α上无数条直线”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{{\begin{array}{l}{2x-5}&{x<1}\\{x+\frac{a}{x}}&{x≥1}\end{array}}\right.$为R上的单调函数,则实数a的取值范围是[-4,1].

查看答案和解析>>

同步练习册答案