精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f(f(a))=2,则实数a的值为-$\sqrt{3}$,$\frac{1}{2}$,16.

分析 f(f(a))=2,由此利用分类讨论思想能求出a.

解答 解:由f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,f(f(a))=2,
当log2a≤0时,即0<a≤1时,(log2a)2+1=2,
即(log2a)2=1,
解得a=$\frac{1}{2}$,
当log2a>0时,即a>1时,log2(log2a)=2,
解得a=16,
因为a2+1>0,log2(a2+1)=2,即a2+1=4
解得a=$\sqrt{3}$(舍去),或-$\sqrt{3}$,
综上所述a的值为-$\sqrt{3}$,$\frac{1}{2}$,16,
故答案为:-$\sqrt{3}$,$\frac{1}{2}$,16,

点评 本题考查函数值的求法及应用,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线$E:{x^2}-\frac{y^2}{3}=1$的左焦点为F,直线x=2与双曲线E相交于A,B两点,则△ABF的面积为(  )
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,c=\sqrt{{a^2}-{b^2}},e=\frac{c}{a})$,其左、右焦点分别为F1,F2,关于椭圆有以下四种说法:
(1)设A为椭圆上任一点,其到直线${l_1}:x=-\frac{a^2}{c},{l_2}:x=\frac{a^2}{c}$的距离分别为d2,d1,则$\frac{{|A{F_1}|}}{d_1}=\frac{{|A{F_2}|}}{d_2}$;
(2)设A为椭圆上任一点,AF1,AF2分别与椭圆交于B,C两点,则$\frac{{|A{F_1}|}}{{|{F_1}B|}}+\frac{{|A{F_2}|}}{{|{F_2}C|}}≥\frac{{2(1+{e^2})}}{{1-{e^2}}}$(当且仅当点A在椭圆的顶点取等);
(3)设A为椭圆上且不在坐标轴上的任一点,过A的椭圆切线为l,M为线段F1F2上一点,且$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{{|{F_1}M|}}{{|M{F_2}|}}$,则直线AM⊥l;
(4)面积为2ab的椭圆内接四边形仅有1个.
其中正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在正方体ABCD-A1B1C1D1中,AA1,AB,CC1的中点分别为E,F,G,则EF与A1G所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=3x+a的反函数y=f-1(x),若函数y=f-1(x)的图象经过(4,1),则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,在其定义域既是奇函数又是减函数的是(  )
A.y=|x|B.y=-x3C.y=($\frac{1}{2}$)xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x|(2-x)
(1)作出函数f(x)的大致图象,并指出其单调区间;
(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;
(1)求实数a、b的值;
(2)若不等式$f(x)+g(x)≥log_2^2k-2{log_2}k-3$对任意x∈R恒成立,求实数k的范围;
(3)对于定义在[p,q]上的函数m(x),设x0=p,xn=q,用任意xi(i=1,2,…,n-1)将[p,q]划分成n个小区间,其中xi-1<xi<xi+1,若存在一个常数M>0,使得不等式|m(x0)-m(x1)|+|m(x1)-m(x2)|+…+|m(xn-1)-m(xn)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)3${\;}^{1+lo{g}_{3}2}$=6. 
(2)${log_3}\frac{1}{2}+{log_3}\frac{2}{3}+{log_3}\frac{3}{4}+…+{log_3}\frac{80}{81}$=-4.

查看答案和解析>>

同步练习册答案