分析 (1)由已知中g(x)在区间[2,3]的最大值为4,最小值为1,结合函数的单调性及最值,我们易构造出关于a,b的方程组,解得a,b的值;
(2)求出f(x),$f(x)+g(x)≥log_2^2k-2{log_2}k-3$对任意x∈R恒成立等价于F(x)min=f(x)+g(x)恒成立,求实数k的范围;
根据有界变差函数的定义,我们先将区间[1,3]进行划分,进而判断$\sum_{i=1}^{n}$|m(xi)-m(xi-1)|≤M是否恒成立,进而得到结论.
解答 解:(1)∵函数g(x)=ax2-2ax+1+b,
∵a>0,对称轴x=1,
∴g(x)在区间[2,3]上是增函数,
又∵函数g(x)故在区间[2,3]上的最大值为4,最小值为1,
∴$\left\{\begin{array}{l}{a×{2}^{2}-2a×2+1+b=1}\\{a×{3}^{2}-2a×3+1+b=4}\end{array}\right.$,
解得:a=1,b=0.
∴g(x)=x2-2x+1
故实数a的值为1,b的值为0.
(2)由(1)可知g(x)=x2-2x+1,
∵f(x)=g(|x|),
∴f(x)=x2-2|x|+1,
∵$f(x)+g(x)≥log_2^2k-2{log_2}k-3$对任意x∈R恒成立,
令F(x)=f(x)+g(x)=x2-2x+1+x2-2|x|+1=$\left\{\begin{array}{l}{2{x}^{2}-4x+2,(x≥0)}\\{2{x}^{2}+2,(x<0)}\end{array}\right.$
根据二次函数的图象及性质可得F(x)min=f(1)=0
则F(x)min≥$(lo{g}_{2}k)^{2}-2lo{g}_{2}k-3$恒成立,即:$(lo{g}_{2}k)^{2}-2lo{g}_{2}k-3$≤0
令log2k=t,
则有:t2-2t-3≤0,
解得:-1≤t≤3,
即$lo{g}_{2}\frac{1}{2}≤lo{g}_{2}k≤lo{g}_{2}8$,
得:$\frac{1}{2}≤k≤8$
故得实数k的范围为$[\frac{1}{2},8]$.
(3)函数f(x)为[1,3]上的有界变差函数.
因为函数f(x)为[1,3]上的单调递增函数,且对任意划分T:1=x0<x1<…<xi<…<xn=3
有f(1)=f(x0)<f(x1)<…<f(xI)<…<f(xn)=f(3)
所以$\sum_{i=1}^{n}$|m(xi)-m(xi-1)|=f(x1)-f(x0)+f(x2)-f(x1)<…<f(xn)-f(xn-1)
=f(xn)-f(x0)=f(3)-f(1)=4恒成立,
所以存在常数M,使得$\sum_{i=1}^{n}$|m(xi)-m(xi-1)|≤M是恒成立.
M的最小值为4,即Mmin=4;
点评 本题考查的知识点是函数恒成立问题,二次函数在闭区间上的最值,新定义,其中(1)的关键是分析出函数的单调性,(2)要用转化思想将其转化为二次函数(3)的关键是真正理解新定义的含义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要 | B. | 必要非充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1009 | B. | 1008 | C. | 1007 | D. | 1006 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com