精英家教网 > 高中数学 > 题目详情
2.函数$f(x)=\sqrt{x}+1$的反函数是f-1(x)=(x-1)2(x≥1).

分析 根据反函数的定义,求出x关系y的函数,把x与y互换,可得反函数的解析式.

解答 解:函数$f(x)=y=\sqrt{x}+1$,其定义域为{x|x≥0}.
解得:x=(y-1)2
把x与y互换可得y=(x-1)2
∴函数$f(x)=\sqrt{x}+1$的反函数位:f-1(x)=(x-1)2
故答案为:f-1(x)=(x-1)2.(x≥1)

点评 本题考查了反函数的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)=|2x-1|+|5x-1|
(1)求f(x)>x+1的解集;
(2)若m=2-n,对?m,n∈(0,+∞),恒有$\frac{1}{m}+\frac{4}{n}≥f(x)$成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,在其定义域既是奇函数又是减函数的是(  )
A.y=|x|B.y=-x3C.y=($\frac{1}{2}$)xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设数列{an}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{an}中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则a15的值为324.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;
(1)求实数a、b的值;
(2)若不等式$f(x)+g(x)≥log_2^2k-2{log_2}k-3$对任意x∈R恒成立,求实数k的范围;
(3)对于定义在[p,q]上的函数m(x),设x0=p,xn=q,用任意xi(i=1,2,…,n-1)将[p,q]划分成n个小区间,其中xi-1<xi<xi+1,若存在一个常数M>0,使得不等式|m(x0)-m(x1)|+|m(x1)-m(x2)|+…+|m(xn-1)-m(xn)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,已知半径为1的扇形AOB,∠AOB=60°,P为弧$\widehat{AB}$上的一个动点,则$\overrightarrow{OP}•\overrightarrow{AB}$取值范围是[$-\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,沿河有A、B两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污
水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为f(m)=25•m0.7(万元),m表示污水流量,铺设管道的费用(包括管道费)$g(x)=3.2\sqrt{x}$(万元),x表示输送污水管道的长度(千米);
已知城镇A和城镇B的污水流量分别为m1=3、m2=5,A、B两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题(结果精确到0.1)
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为x千米,求联合建厂的总费用y与x的函数关系
式,并求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\frac{(x+4)(x+3)}{{{x^2}-5x+4}}<0$的解集为(-4,-3)∪(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点P(2,4)在函数f(x)=logax的图象上,点Q(m,16)在f(x)的反函数图象上,则m=16.

查看答案和解析>>

同步练习册答案