精英家教网 > 高中数学 > 题目详情
12.已知f(x)=|2x-1|+|5x-1|
(1)求f(x)>x+1的解集;
(2)若m=2-n,对?m,n∈(0,+∞),恒有$\frac{1}{m}+\frac{4}{n}≥f(x)$成立,求实数x的范围.

分析 (1)通过讨论x的范围,求出各个区间上的x的范围,取交集即可;(2)根据基本不等式的性质求出x的范围即可.

解答 解:(1)$f(x)=\left\{\begin{array}{l}2-7x(x<\frac{1}{5})\\ 3x(\frac{1}{5}≤x≤\frac{1}{2})\\ 7x-2(x>\frac{1}{2})\end{array}\right.$,
故x>$\frac{1}{2}$时,7x-2>x+1,解得:x>$\frac{1}{2}$,
$\frac{1}{5}$≤x≤$\frac{1}{2}$时,3x>x+1,解得:x>$\frac{1}{2}$,
x<$\frac{1}{5}$时,2-7x>x+1,解得:x<$\frac{1}{8}$,
故f(x)>x+1的解集为$(-∞,\frac{1}{8})∪(\frac{1}{2},+∞)$…(5分)
(2)因为$\frac{1}{m}+\frac{4}{n}=(\frac{1}{m}+\frac{4}{n})(m+n)•\frac{1}{2}≥\frac{9}{2}$,
当且仅当$m=\frac{2}{3},n=\frac{4}{3}$时等于号成立.
由$\frac{9}{2}≥f(x)$解得x的取值范围为$(-\frac{5}{14},\frac{13}{14})$…(10分)

点评 本题考查了解绝对值不等式问题,考查不等式的性质以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-(a+4)x+4.
(1)若对任意的x∈(0,1],都有f(x)>(a-1)x2恒成立,求实数a的取值范围;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(Ⅰ)判断△ABC的形状;
(Ⅱ)求$sinB+cos({A+\frac{π}{6}})$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线$y=lnx-\frac{2}{x}$在x=1处的切线的倾斜角为α,则cosα+sinα的值为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,a1=1,满足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求证:数列$\{\frac{S_n}{n}\}$为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果实数x,y满足关系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,又$\frac{2x+y-7}{x-3}≤c$恒成立,则c的取值范围为(  )
A.[$\frac{9}{5}$,3]B.(-∞,3]C.[3,+∞)D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=asinx,g(x)=lnx,其中a∈R(y=g-1(x)与y=g(x)关于直线y=x对称)
(1)若函数G(x)=f(1-x)+g(x)在区间(0,1)上递增,求a的取值范围;
(2)证明:$\sum_{k=1}^n{sin\frac{1}{{{{(1+k)}^2}}}<ln2}$;
(3)设F(x)=g-1(x)-mx2-2(x+1)+b(m<0),其中F(x)>0恒成立,求满足条件的最小整数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式|x-3|≤1的解集是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)=\sqrt{x}+1$的反函数是f-1(x)=(x-1)2(x≥1).

查看答案和解析>>

同步练习册答案