精英家教网 > 高中数学 > 题目详情
7.设数列{an}的前n项和为Sn,a1=1,满足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求证:数列$\{\frac{S_n}{n}\}$为等比数列;
(2)求数列{Sn}的前n项和Tn

分析 (1)先根据向量的平行得到n(Sn+1-2Sn)=2Sn,继而得到$\frac{{S}_{{\;}_{n+1}}}{n+1}$=2•$\frac{{S}_{n}}{n}$,问题得以证明,
(2)由(1)可得以${S_n}=n•{2^{n-1}}$,由错位相减法即可求出数列{Sn}的前n项和Tn

解答 证明:(1)$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
∴n(Sn+1-2Sn)=2Sn
∴$\frac{{S}_{{\;}_{n+1}}}{n+1}$=2•$\frac{{S}_{n}}{n}$,
∴a1=1,
∴$\frac{{S}_{1}}{1}$=1,
∴数列$\{\frac{S_n}{n}\}$是以1为首项,以2为公比的等比数列
(2)由(1)知$\frac{S_n}{n}={2^{n-1}}(n∈{N^+})$,
∴${S_n}=n•{2^{n-1}}$,
∴Tn=1×20+2×21+3×22+…+n•2n-1
∴2Tn=1×21+2×22+…+(n-1)•2n-1+n•2n
由错位相减得-Tn=1+21+22+…+2n-1-n•2n=$\frac{1(1-{2}^{n})}{1-2}$-n•2n=2n-1-n•2n=(1-n)2n-1,
∴Tn=(n-1)2n+1

点评 本题考查了向量的平行和等比数列的定义和错位相减法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果偶函数在[a,b]具有最大值,那么该函数在[-b.-a]有(  )
A.最大值B.最小值C.没有最大值D.没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$E:{x^2}-\frac{y^2}{3}=1$的左焦点为F,直线x=2与双曲线E相交于A,B两点,则△ABF的面积为(  )
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.${({x^3}+\frac{1}{{\sqrt{x}}})^n}$的展开式的所有二项式系数之和为128,则n为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$a={2^{\frac{π}{8}}}$,${(\frac{1}{2})^b}={log_{\frac{1}{π}}}b$,$c={log_2}sin\frac{π}{3}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=|2x-1|+|5x-1|
(1)求f(x)>x+1的解集;
(2)若m=2-n,对?m,n∈(0,+∞),恒有$\frac{1}{m}+\frac{4}{n}≥f(x)$成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,c=\sqrt{{a^2}-{b^2}},e=\frac{c}{a})$,其左、右焦点分别为F1,F2,关于椭圆有以下四种说法:
(1)设A为椭圆上任一点,其到直线${l_1}:x=-\frac{a^2}{c},{l_2}:x=\frac{a^2}{c}$的距离分别为d2,d1,则$\frac{{|A{F_1}|}}{d_1}=\frac{{|A{F_2}|}}{d_2}$;
(2)设A为椭圆上任一点,AF1,AF2分别与椭圆交于B,C两点,则$\frac{{|A{F_1}|}}{{|{F_1}B|}}+\frac{{|A{F_2}|}}{{|{F_2}C|}}≥\frac{{2(1+{e^2})}}{{1-{e^2}}}$(当且仅当点A在椭圆的顶点取等);
(3)设A为椭圆上且不在坐标轴上的任一点,过A的椭圆切线为l,M为线段F1F2上一点,且$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{{|{F_1}M|}}{{|M{F_2}|}}$,则直线AM⊥l;
(4)面积为2ab的椭圆内接四边形仅有1个.
其中正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在正方体ABCD-A1B1C1D1中,AA1,AB,CC1的中点分别为E,F,G,则EF与A1G所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;
(1)求实数a、b的值;
(2)若不等式$f(x)+g(x)≥log_2^2k-2{log_2}k-3$对任意x∈R恒成立,求实数k的范围;
(3)对于定义在[p,q]上的函数m(x),设x0=p,xn=q,用任意xi(i=1,2,…,n-1)将[p,q]划分成n个小区间,其中xi-1<xi<xi+1,若存在一个常数M>0,使得不等式|m(x0)-m(x1)|+|m(x1)-m(x2)|+…+|m(xn-1)-m(xn)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.

查看答案和解析>>

同步练习册答案