精英家教网 > 高中数学 > 题目详情
16.如图所示,在正方体ABCD-A1B1C1D1中,AA1,AB,CC1的中点分别为E,F,G,则EF与A1G所成的角为(  )
A.30°B.45°C.60°D.90°

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出EF与A1G所成的角.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则E(2,0,1),F(2,1,0),A1(2,0,2),G(0,2,1),
$\overrightarrow{EF}$=(0,1,-1),$\overrightarrow{{A}_{1}G}$=(-2,2,-1),
设EF与A1G所成的角为θ,
则cosθ=$\frac{|\overrightarrow{EF}•\overrightarrow{{A}_{1}G}|}{|\overrightarrow{EF}|•|\overrightarrow{{A}_{1}G}|}$=$\frac{3}{\sqrt{2}•3}$=$\frac{\sqrt{2}}{2}$,
∴θ=45°.
∴EF与A1G所成的角为45°.
故选:B.

点评 本题考查线线角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,则对任意实数a、b,若a+b≥0则(  )
A.f(a)+f(b)≤0B.f(a)+f(b)≥0C.f(a)-f(b)≤0D.f(a)-f(b)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,a1=1,满足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求证:数列$\{\frac{S_n}{n}\}$为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=asinx,g(x)=lnx,其中a∈R(y=g-1(x)与y=g(x)关于直线y=x对称)
(1)若函数G(x)=f(1-x)+g(x)在区间(0,1)上递增,求a的取值范围;
(2)证明:$\sum_{k=1}^n{sin\frac{1}{{{{(1+k)}^2}}}<ln2}$;
(3)设F(x)=g-1(x)-mx2-2(x+1)+b(m<0),其中F(x)>0恒成立,求满足条件的最小整数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某班50人的一次竞赛成绩的频数分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用各组区间中点值,可估计本次比赛该班的平均分为(  )
A.56B.68C.78D.82

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式|x-3|≤1的解集是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f(f(a))=2,则实数a的值为-$\sqrt{3}$,$\frac{1}{2}$,16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2x+m的反函数为y=f-1(x),且y=f-1(x)的图象过点Q(5,2),那么m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,且满足S2013>0,S2014<0,则前n项和Sn取最大值时n的值为(  )
A.1009B.1008C.1007D.1006

查看答案和解析>>

同步练习册答案