精英家教网 > 高中数学 > 题目详情
6.设$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,则对任意实数a、b,若a+b≥0则(  )
A.f(a)+f(b)≤0B.f(a)+f(b)≥0C.f(a)-f(b)≤0D.f(a)-f(b)≥0

分析 求解函数f(x)的定义域,判断其奇偶性和单调性,利用奇偶性和单调性可得答案.

解答 解:设$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,其定义域为R,
$f(-x)={-x^3}+{log_2}(-x+\sqrt{{x^2}+1})$=$-{x}^{3}-lo{g}_{2}(x+\sqrt{{x}^{2}+1})$=-f(x),
∴函数f(x)是奇函数.且在(0,+∞)上单调递增,
故函数f(x)在R上是单调递增,
那么:a+b≥0,即a≥-b,
∴f(a)≥f(-b),
得f(a)≥-f(b),
可得:f(a)+f(b)≥0.
故选:B.

点评 本题考查了函数的奇偶性和单调性的判断及其运用能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.“m<0”是“$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m-1}$=1表示的曲线是双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果偶函数在[a,b]具有最大值,那么该函数在[-b.-a]有(  )
A.最大值B.最小值C.没有最大值D.没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某企业节能降耗技术改造后,在生产某产品过程中几录的产量x(吨)与相应的生产能耗y(吨)的几
组对应数据如表所示:
x3456
y2.534a
若根据表中数据得出y关于x的线性回归方程为$\stackrel{∧}{y}$=0.7x+0.35,则表中a的值为(  )
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是公差为2的等差数列,数列{bn}满足${b_1}=1,{b_2}=\frac{1}{2}$,若n∈N*时,anbn+1-bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设${C_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,以频率作为概率,请依据上述数据估计,求甲在第11至
第13次射击中获得获得优秀的次数ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$E:{x^2}-\frac{y^2}{3}=1$的左焦点为F,直线x=2与双曲线E相交于A,B两点,则△ABF的面积为(  )
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.${({x^3}+\frac{1}{{\sqrt{x}}})^n}$的展开式的所有二项式系数之和为128,则n为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在正方体ABCD-A1B1C1D1中,AA1,AB,CC1的中点分别为E,F,G,则EF与A1G所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案