精英家教网 > 高中数学 > 题目详情
11.甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,以频率作为概率,请依据上述数据估计,求甲在第11至
第13次射击中获得获得优秀的次数ξ的分布列和期望.

分析 (I)利用平均数与方差计算公式可得s2,s2.即可比较出.
(II)甲运动员命中8环及以上环数的概率P=$\frac{2}{5}$,则甲在第11至第13次射击中获得获得优秀的次数ξ取值为0,1,2,3.可得P(ξ=k)=${∁}_{3}^{k}(\frac{2}{5})^{k}(\frac{3}{5})^{3-k}$.

解答 解:(I):∵x=$\frac{1}{10}$(7+8+…+4)=7,
x=$\frac{1}{10}$(9+5+…+7)=7.
∴s2=$\frac{1}{10}$[(7-7)2+…+(4-7)2]=4,
s2=$\frac{1}{10}$[(9-7)2+…+(7-7)2]=1.2.
∴甲乙射击的平均成绩一样,乙比甲的射击成绩稳定.
(II)甲运动员命中8环及以上环数的概率P=$\frac{2}{5}$,
则甲在第11至第13次射击中获得获得优秀的次数ξ取值为0,1,2,3.则P(ξ=k)=${∁}_{3}^{k}(\frac{2}{5})^{k}(\frac{3}{5})^{3-k}$,
P(ξ=0)=$\frac{27}{125}$,P(ξ=1)=$\frac{54}{125}$,P(ξ=2)=$\frac{36}{125}$,P(ξ=3)=$\frac{8}{125}$,∴Eξ=3×$\frac{2}{5}$=1.2.

点评 本题考查平均数与方差计算公式、二项分布列及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.双曲线$\frac{{y}^{2}}{3}$-x2=1的两条渐近线的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-(a+4)x+4.
(1)若对任意的x∈(0,1],都有f(x)>(a-1)x2恒成立,求实数a的取值范围;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f'(x)是函数f(x)的导数,f''(x)是函数f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的拐点.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,
设函数g(x)=x3-3x2+4x+2,利用上述探究结果
计算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,则对任意实数a、b,若a+b≥0则(  )
A.f(a)+f(b)≤0B.f(a)+f(b)≥0C.f(a)-f(b)≤0D.f(a)-f(b)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,复数(2+i)2的共轭复数为(  )
A.3-4iB.3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(Ⅰ)判断△ABC的形状;
(Ⅱ)求$sinB+cos({A+\frac{π}{6}})$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线$y=lnx-\frac{2}{x}$在x=1处的切线的倾斜角为α,则cosα+sinα的值为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式|x-3|≤1的解集是[2,4].

查看答案和解析>>

同步练习册答案