精英家教网 > 高中数学 > 题目详情
18.已知双曲线$E:{x^2}-\frac{y^2}{3}=1$的左焦点为F,直线x=2与双曲线E相交于A,B两点,则△ABF的面积为(  )
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

分析 求出双曲线的左焦点,求出AB坐标,然后求解三角形的面积.

解答 解:双曲线$E:{x^2}-\frac{y^2}{3}=1$的左焦点为F(-2,0),
直线x=2与双曲线E相交于A,B两点,
则A(2,3),B(2,-3),
则△ABF的面积为:$\frac{1}{2}×$6×4=12.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=-4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=-6,则|AB|为(  )
A.8B.10C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间[-1,3]内任取一个实数x满足log2(x-1)>0的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,则对任意实数a、b,若a+b≥0则(  )
A.f(a)+f(b)≤0B.f(a)+f(b)≥0C.f(a)-f(b)≤0D.f(a)-f(b)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的导数,e为自然对数的底数)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(Ⅰ)判断△ABC的形状;
(Ⅱ)求$sinB+cos({A+\frac{π}{6}})$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为(  )
A.$f(x)=2sin({x-\frac{π}{6}})$B.$f(x)=2sin({2x-\frac{π}{3}})$C.$f(x)=2sin({x+\frac{π}{12}})$D.$f(x)=2sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,a1=1,满足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求证:数列$\{\frac{S_n}{n}\}$为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f(f(a))=2,则实数a的值为-$\sqrt{3}$,$\frac{1}{2}$,16.

查看答案和解析>>

同步练习册答案