精英家教网 > 高中数学 > 题目详情
10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为(  )
A.$f(x)=2sin({x-\frac{π}{6}})$B.$f(x)=2sin({2x-\frac{π}{3}})$C.$f(x)=2sin({x+\frac{π}{12}})$D.$f(x)=2sin({2x-\frac{π}{6}})$

分析 由题意求出A,T,利用周期公式求出ω,利用当x=$\frac{5π}{12}$时取得最大值2,求出φ,即可得到函数的解析式.

解答 解:由题意可知A=2,T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,ω=2,
因为:当x=$\frac{5π}{12}$时取得最大值2,
所以:2=2sin(2×$\frac{5π}{12}$+φ),
所以:2×$\frac{5π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ-$\frac{π}{3}$,k∈Z,
因为:|φ|<$\frac{π}{2}$,
所以:可得φ=-$\frac{π}{3}$,可得函数f(x)的解析式:f(x)=2sin(2x-$\frac{π}{3}$).
故选:B.

点评 本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知O为坐标原点,方程x2+y2+x-6y+c=0
(1)若此方程表示圆,求c的取值范围;
(2)若(1)中的圆与直线l:x+2y-3=0交于P、Q两点.若以PQ为直径的圆过原点O求c值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是公差为2的等差数列,数列{bn}满足${b_1}=1,{b_2}=\frac{1}{2}$,若n∈N*时,anbn+1-bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设${C_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$E:{x^2}-\frac{y^2}{3}=1$的左焦点为F,直线x=2与双曲线E相交于A,B两点,则△ABF的面积为(  )
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.
(Ⅰ)求证:平面PBD⊥平面BFDE;
(Ⅱ)求四棱锥P-BFDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.${({x^3}+\frac{1}{{\sqrt{x}}})^n}$的展开式的所有二项式系数之和为128,则n为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$a={2^{\frac{π}{8}}}$,${(\frac{1}{2})^b}={log_{\frac{1}{π}}}b$,$c={log_2}sin\frac{π}{3}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,c=\sqrt{{a^2}-{b^2}},e=\frac{c}{a})$,其左、右焦点分别为F1,F2,关于椭圆有以下四种说法:
(1)设A为椭圆上任一点,其到直线${l_1}:x=-\frac{a^2}{c},{l_2}:x=\frac{a^2}{c}$的距离分别为d2,d1,则$\frac{{|A{F_1}|}}{d_1}=\frac{{|A{F_2}|}}{d_2}$;
(2)设A为椭圆上任一点,AF1,AF2分别与椭圆交于B,C两点,则$\frac{{|A{F_1}|}}{{|{F_1}B|}}+\frac{{|A{F_2}|}}{{|{F_2}C|}}≥\frac{{2(1+{e^2})}}{{1-{e^2}}}$(当且仅当点A在椭圆的顶点取等);
(3)设A为椭圆上且不在坐标轴上的任一点,过A的椭圆切线为l,M为线段F1F2上一点,且$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{{|{F_1}M|}}{{|M{F_2}|}}$,则直线AM⊥l;
(4)面积为2ab的椭圆内接四边形仅有1个.
其中正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x|(2-x)
(1)作出函数f(x)的大致图象,并指出其单调区间;
(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.

查看答案和解析>>

同步练习册答案