精英家教网 > 高中数学 > 题目详情
10.设数列{an}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{an}中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则a15的值为324.

分析 如果用(t,s)表示3s+3t,则4=(0,1)=30+31,10=(0,2)=30+32,12=(1,2)=31+32,….利用归纳推理即可得出.

解答 解:如果用(t,s)表示3s+3t
则4=(0,1)=30+31
10=(0,2)=30+32
12=(1,2)=31+32
28=(0,3)=30+33
30=(1,3)=31+33
36=(2,3)=32+33,….
利用归纳推理即可得:a15=(4,5),则a15=34+35=324.
故答案为:324.

点评 本题考查了指数幂的运算性质、归纳法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.曲线$y=lnx-\frac{2}{x}$在x=1处的切线的倾斜角为α,则cosα+sinα的值为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式|x-3|≤1的解集是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)解不等式:3≤x2-2x<8;
(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2x+m的反函数为y=f-1(x),且y=f-1(x)的图象过点Q(5,2),那么m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC中,AC=1,$∠ABC=\frac{2π}{3}$,设∠BAC=x,记$f(x)=\overrightarrow{AB}•\overrightarrow{BC}$;
(1)求函数f(x)的解析式及定义域;
(2)试写出函数f(x)的单调递增区间,并求方程$f(x)=\frac{1}{6}$的解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)=\sqrt{x}+1$的反函数是f-1(x)=(x-1)2(x≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b∈R,则“ab>0“是“$\frac{b}{a}$+$\frac{a}{b}$>2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列各式的值:
(1)${(2\frac{1}{4})^{\frac{1}{2}}}$-${(π-1)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}$; (2)${log_3}^{\frac{{\sqrt{3}}}{3}}$+lg5+lg0.2+${7^{{{log}_7}^2}}$.

查看答案和解析>>

同步练习册答案