精英家教网 > 高中数学 > 题目详情
16.抛物线x2=-4y的准线方程为y=1.

分析 由抛物线x2=-4y焦点在y轴的负半轴上,则$\frac{p}{2}$=1,即可求得抛物线的准线方程.

解答 解:抛物线x2=-4y焦点在y轴的负半轴上,则$\frac{p}{2}$=1,
∴抛物线的焦点坐标为(0,-1),准线方程:y=1,
故答案为:y=1.

点评 本题考查抛物线的方程,考查抛物线的简单几何性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;
(1)求实数a、b的值;
(2)若不等式$f(x)+g(x)≥log_2^2k-2{log_2}k-3$对任意x∈R恒成立,求实数k的范围;
(3)对于定义在[p,q]上的函数m(x),设x0=p,xn=q,用任意xi(i=1,2,…,n-1)将[p,q]划分成n个小区间,其中xi-1<xi<xi+1,若存在一个常数M>0,使得不等式|m(x0)-m(x1)|+|m(x1)-m(x2)|+…+|m(xn-1)-m(xn)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)3${\;}^{1+lo{g}_{3}2}$=6. 
(2)${log_3}\frac{1}{2}+{log_3}\frac{2}{3}+{log_3}\frac{3}{4}+…+{log_3}\frac{80}{81}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,三条边a,b,c所对的角分别为A、B、C,且a2+b2-c2=ab
(Ⅰ)求角C的大小;
(Ⅱ)若f(x)=$\sqrt{3}$sinxcosx+cos2x,求f(B)的最大值,并判断此时△ABC$;\\;的$的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x>0,y>0且$\frac{1}{x}$+$\frac{4}{y}$=1,则x+y的最小值为(  )
A.4B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点P(2,4)在函数f(x)=logax的图象上,点Q(m,16)在f(x)的反函数图象上,则m=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}的通项公式为an=$\frac{1}{{n}^{2}+2n}$,其前n项和为Sn,则S10的值为(  )
A.1-$\frac{1}{12}$B.$\frac{1}{2}$(1-$\frac{1}{12}$)C.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{12}$)D.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{11}$-$\frac{1}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知球的直径SC=4,AB是该球球面上两点,AB=2,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案