精英家教网 > 高中数学 > 题目详情
8.$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2=20.

分析 化根式为分数指数幂,然后利用对数的运算性质化简求值.

解答 解:$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2
=$2{7}^{\frac{2}{3}}-3×lo{g}_{2}{2}^{-3}+2lg5+2lg2$
=9-3×(-3)+2=20.
故答案为:20.

点评 本题考查对数的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知两个不相等的非零向量$\overrightarrow a$和$\overrightarrow b$,向量组$(\overrightarrow{x_1},\overrightarrow{x_2},\overrightarrow{x_3},\overrightarrow{x_4})$和$(\overrightarrow{y_1},\overrightarrow{y_2},\overrightarrow{y_3},\overrightarrow{y_4})$均由2个$\overrightarrow a$和2个$\overrightarrow b$排列而成,记$S=\overrightarrow{x_1}•\overrightarrow{y_1}+\overrightarrow{x_2}•\overrightarrow{y_2}+\overrightarrow{x_3}•\overrightarrow{y_3}+\overrightarrow{x_4}•\overrightarrow{y_4}$,那么S的所有可能取值中的最小值是$4\overrightarrow{a}•\overrightarrow{b}$(用向量$\overrightarrow a$、$\overrightarrow b$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过抛物线y2=4x的顶点O作两条互相垂直的弦OA、OB,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.抛物线x2=-4y的准线方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{|{{2^x}-1}|}}{{{2^x}+1}}$.
(1)判断函数f(x)的奇偶性;
(2)写出函数的单调区间,并证明函数f(x)在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设命题p:?x<0,x2≥1,则?p为(  )
A.?x≥0,x2<1B.?x<0,x2<1C.?x≥0,x2<1D.?x<0,x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={α|α=kπ+$\frac{π}{2}$,k∈Z}与集合B={α|α=2kπ±$\frac{π}{2}$,k∈Z}的关系是(  )
A.A=BB.A⊆BC.B⊆AD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,a1=2,公差为d,则“d=2”是“a1,a2,a4成等比数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\frac{π}{4}<α<\frac{3π}{4}$,$sin(α-\frac{π}{4})=\frac{4}{5}$,则cosα=(  )
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

同步练习册答案