精英家教网 > 高中数学 > 题目详情
13.设命题p:?x<0,x2≥1,则?p为(  )
A.?x≥0,x2<1B.?x<0,x2<1C.?x≥0,x2<1D.?x<0,x2<1

分析 根据含有量词的命题的否定进行判断即可.

解答 解:特称命题的否定是全称命题,
∴?p:?x∈R,都有x2<1.
故选:B.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图所示,沿河有A、B两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污
水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为f(m)=25•m0.7(万元),m表示污水流量,铺设管道的费用(包括管道费)$g(x)=3.2\sqrt{x}$(万元),x表示输送污水管道的长度(千米);
已知城镇A和城镇B的污水流量分别为m1=3、m2=5,A、B两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题(结果精确到0.1)
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为x千米,求联合建厂的总费用y与x的函数关系
式,并求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,三条边a,b,c所对的角分别为A、B、C,且a2+b2-c2=ab
(Ⅰ)求角C的大小;
(Ⅱ)若f(x)=$\sqrt{3}$sinxcosx+cos2x,求f(B)的最大值,并判断此时△ABC$;\\;的$的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点P(2,4)在函数f(x)=logax的图象上,点Q(m,16)在f(x)的反函数图象上,则m=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对任意的实数x,若[x]表示不超过x的最大整数,则“-1<x-y<1”是“[x]=[y]”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}的通项公式为an=$\frac{1}{{n}^{2}+2n}$,其前n项和为Sn,则S10的值为(  )
A.1-$\frac{1}{12}$B.$\frac{1}{2}$(1-$\frac{1}{12}$)C.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{12}$)D.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{11}$-$\frac{1}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,求函数y=f(x)的值域;
(2)已知ω>0,函数$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$,若函数g(x)的最小正周期是π,求ω的值和函数g(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:${(2\sqrt{2})^{\frac{2}{3}}}×{(0.1)^{-1}}-lg2-lg5$=19.

查看答案和解析>>

同步练习册答案