分析 (1)利用二倍角公式和辅助角公式对已知函数解析式进行化简得到f(x)=sin(2x+$\frac{π}{6}$)+2,进而根据正弦函数的性质求得函数的值域.
(2)将$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$代入(1)中的函数解析式得到g(x)=sin(ωx+$\frac{π}{3}$)+2,结合正弦函数的性质求ω的值和函数g(x)的增区间.
解答 解:(1)$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1+cos2x}{2}$+$\frac{3}{2}$
=sin(2x+$\frac{π}{6}$)+2,
即f(x)=sin(2x+$\frac{π}{6}$)+2,
∵$x∈[{-\frac{π}{6},\frac{π}{3}}]$,
∴2x+$\frac{π}{6}$$∈[{-\frac{π}{6},\frac{5π}{6}}]$,
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1,
∴$\frac{3}{2}$≤sin(2x+$\frac{π}{6}$)+2≤3,即当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,函数y=f(x)的值域是[$\frac{3}{2}$,3];
(2)$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})=sin({ωx+\frac{π}{3}})+2$,
所以$T=\frac{2π}{ω}=π,ω=2$,
因为$\begin{array}{l}-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ,-\frac{5π}{12}+kπ≤x≤\frac{π}{12}+kπ\end{array}$,
所以增区间为[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z.
点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{4}{3},+∞)$ | B. | [$\frac{4}{3}$,$\frac{10}{3}$] | C. | [-8,10] | D. | (CRA)∩B |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16分钟 | B. | 19分钟 | C. | 20分钟 | D. | 17分钟 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$,$\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{2}$ | C. | $\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{2}}{4}$,$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100 | B. | 10 | C. | $\sqrt{10}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com