精英家教网 > 高中数学 > 题目详情
3.已知函数y=f(x)的定义域为[-1,5],则函数y=f(3x-5)的定义域为(  )
A.$[\frac{4}{3},+∞)$B.[$\frac{4}{3}$,$\frac{10}{3}$]C.[-8,10]D.(CRA)∩B

分析 由已知函数定义域可得-1≤3x-5≤5,求解不等式得答案.

解答 解:∵函数y=f(x)的定义域为[-1,5],
∴由-1≤3x-5≤5,解得$\frac{4}{3}≤x≤\frac{10}{3}$.
∴函数y=f(3x-5)的定义域为[$\frac{4}{3}$,$\frac{10}{3}$].
故选:B.

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列函数中,在其定义域既是奇函数又是减函数的是(  )
A.y=|x|B.y=-x3C.y=($\frac{1}{2}$)xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,沿河有A、B两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污
水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为f(m)=25•m0.7(万元),m表示污水流量,铺设管道的费用(包括管道费)$g(x)=3.2\sqrt{x}$(万元),x表示输送污水管道的长度(千米);
已知城镇A和城镇B的污水流量分别为m1=3、m2=5,A、B两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题(结果精确到0.1)
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为x千米,求联合建厂的总费用y与x的函数关系
式,并求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\frac{(x+4)(x+3)}{{{x^2}-5x+4}}<0$的解集为(-4,-3)∪(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)3${\;}^{1+lo{g}_{3}2}$=6. 
(2)${log_3}\frac{1}{2}+{log_3}\frac{2}{3}+{log_3}\frac{3}{4}+…+{log_3}\frac{80}{81}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,设不等式组$\left\{\begin{array}{l}-1≤x≤2\\ 0≤y≤2\end{array}\right.$所表示的平面区域是W,从区域W中随机取点M(x,y).
(1)若x,y∈Z,求点M位于第一象限的概率;
(2)若x,y∈R,求|OM|≥1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,三条边a,b,c所对的角分别为A、B、C,且a2+b2-c2=ab
(Ⅰ)求角C的大小;
(Ⅱ)若f(x)=$\sqrt{3}$sinxcosx+cos2x,求f(B)的最大值,并判断此时△ABC$;\\;的$的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点P(2,4)在函数f(x)=logax的图象上,点Q(m,16)在f(x)的反函数图象上,则m=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,求函数y=f(x)的值域;
(2)已知ω>0,函数$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$,若函数g(x)的最小正周期是π,求ω的值和函数g(x)的增区间.

查看答案和解析>>

同步练习册答案