精英家教网 > 高中数学 > 题目详情
10.小明想沏壶茶喝,当时的情况是,开水没有,烧开水需要15分钟,烧开水的壶要洗,需要1分钟,沏茶的壶和茶杯要洗,需2分钟,茶叶已有,取茶叶需1分钟,沏茶也需1分钟,小明要喝到自己所沏的茶至少需要花的时间为(  )
A.16分钟B.19分钟C.20分钟D.17分钟

分析 烧开水的同时可以洗茶壶,洗茶杯,拿茶叶,由此求解.

解答 解:具体工序安排如下:
①洗烧开水的壶、灌入凉水需1分钟,
②烧开水需15分钟,烧开水时洗茶壶,茶杯需2分钟,拿茶叶需1分钟,
③沏茶需1分钟.
一共只需要3个大步骤,共有17分钟.
故选:D.

点评 此类问题属于合理安排时间问题,要奔着既节约时间,又使各项工序互不矛盾进行安排.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不等式$\frac{(x+4)(x+3)}{{{x^2}-5x+4}}<0$的解集为(-4,-3)∪(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点P(2,4)在函数f(x)=logax的图象上,点Q(m,16)在f(x)的反函数图象上,则m=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对任意的实数x,若[x]表示不超过x的最大整数,则“-1<x-y<1”是“[x]=[y]”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}的通项公式为an=$\frac{1}{{n}^{2}+2n}$,其前n项和为Sn,则S10的值为(  )
A.1-$\frac{1}{12}$B.$\frac{1}{2}$(1-$\frac{1}{12}$)C.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{12}$)D.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{11}$-$\frac{1}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a=2${\;}^{\frac{1}{3}}$,b=ln2,c=log5sin$\frac{4π}{5}$,则(  )
A.c>a>bB.b>a>cC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,求函数y=f(x)的值域;
(2)已知ω>0,函数$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$,若函数g(x)的最小正周期是π,求ω的值和函数g(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.随机变量ξ表示开始第4次发球时甲的得分,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在Rt△ABC中,∠C=90°,$sinA=\frac{5}{13}$,则tanB的值为(  )
A.$\frac{12}{13}$B.$\frac{5}{12}$C.$\frac{13}{12}$D.$\frac{12}{5}$

查看答案和解析>>

同步练习册答案