精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
16
+
y2
12
=1
上一点P到焦点F1的距离等于3,那么点P到另一焦点F2的距离等于______.
∵椭圆的方程为
x2
16
+
y2
12
=1

∴椭圆的焦点在y轴上,a2=16且b2=12,可得a=4且b=2
3

∵点P到椭圆一个焦点的距离为3,
∴设P到另一个焦点的距离为d,则根据椭圆的定义可得3+d=2a=8,解之得d=5.
即P到另一焦点的距离为5.
故答案为:5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,其左、右两焦点分别为F1、F2.直线L经过椭圆C的右焦点F2,且与椭圆交于A、B两点.若A、B、F1构成周长为4
2
的△ABF1,椭圆上的点离焦点F2最远距离为
2
+1
,且弦AB的长为
4
2
3
,求椭圆和直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆:
x2
a2
+
y2
b2
=1
(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线y=
3
(x+c)
与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是(  )
A.
2
2
B.
3
-1
C.
3
-1
2
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

动点P为椭圆
x2
25
+
y2
16
=1
上任意一点,左右焦点分别是F1,F2,直线l为∠F1PF2的外角平分线,过F1作直线l的垂线,垂足为Q,则点Q的轨迹方程是(  )
A.x2+y2=25B.x2+y2=16C.x2-y2=25D.x22y2=16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率是
1
2
,则
b2+1
3a
的最小值为(  )
A.
3
3
B.1C.
2
3
3
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆上一点,F是椭圆的一个焦点,则以线段PF为直径的圆和以椭圆长轴为直径的圆的位置关系是(  )
A.相离B.内切
C.内含D.可以内切,也可以内含

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的长轴为A1A2,B为短轴一端点,若∠A1BA2=120°,则椭圆的离心率为(  )
A.
6
3
B.
3
3
C.
3
2
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆2x2+3y2=6的焦距是(  )
A.2(
3
-
2
)
B.2C.2
5
D.2(
3
+
2
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1,F2为椭圆
x2
4
+y2=1
的两个焦点,并且椭圆上点P满足∠F1PF2=90°,则△F1PF2的面积为______.

查看答案和解析>>

同步练习册答案