精英家教网 > 高中数学 > 题目详情

如图,圆O为△ABC的外接圆,且AB=AC,过点A的直线交圆O于点D,交BC的延长线于点F,DE是BD的延长线,连接CD.

(Ⅰ)求证:∠EDF=∠CDF;

(Ⅱ)求证:AB2=AF·AD.

练习册系列答案
相关习题

科目:高中数学 来源:课标综合版 专题复习 题型:

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.

(1)求实数m的值;

(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在a0∈(a,b),使得(x0)=.试用这个结论证明:若-1<x1<x2,函数g(x)=(x-x1)+f(x1),则对任意x∈(x1,x2),都有f(x)>g(x);

(3)已知正数λ1,λ2,λ3,…,λn,满足λ1+λ2+λ3+…+λn=1,求证:当x≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,x3,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn)

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cosA,cosB),n=(2c+b,a),且m⊥n.

(Ⅰ)求角A的大小;

(Ⅱ)若a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

关于函数函数f(x)=2cosx(cosx+sinx)-1,以下结论正确的是

[  ]

A.

f(x)的最小正周期是π,在区间(-)是增函数

B.

f(x)的最小正周期是π,在区间(-)是增函数

C.

f(x)的最小正周期是π,最大值是

D.

f(x)的最小正周期是2π,最大值是2

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

△ABC中内角A,B,C的对边分别为a,b,c,向=(2sinB,-),=(cos2B,2cos2-1)且

(1)求锐角B的大小,

(2)如果b=2,求△ABC的面积S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

已知α∈(,π),sinα=,则tan(α+)等于

[  ]

A.

B.

7

C.

D.

-7

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

关于函数函数f(x)=2cosx(cosx+sinx)-1,以下结论正确的是

[  ]

A.

f(x)的最小正周期是π,在区间(-)是增函数

B.

f(x)的最小正周期是π,在区间(-)是增函数

C.

f(x)的最小正周期是π,最大值是

D.

f(x)的最小正周期是2π,最大值是2

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

下列函数中,在其定义域内既是奇函数又是增函数的是

[  ]

A.

y=x+x3

B.

y=3x

C.

y=-log2x

D.

查看答案和解析>>

科目:高中数学 来源:课标综合版 专题复习 题型:

已知函数f(x)=ax3+x2-ax,a∈R,x∈R.

(1)若函数f(x)在区间(1,2)上不是单调函数,试求a的取值范围;

(2)直接写出(不需要给出演算步骤)函数的单调递增区间;

(3)如果存在a∈(-∞,-1],使函数h(x)=f(x)+(x),x∈[-1,b](b>-1)在x=-1处取得最小值,试求b的最大值.

查看答案和解析>>

同步练习册答案