精英家教网 > 高中数学 > 题目详情
如图:直三棱柱(侧棱⊥底面)ABC—A1B1C1中,∠ACB=90°,AA1=AC=1,BC=,CD⊥AB,垂足为D.

(1)求证:BC∥平面AB1C1;
(2)求点B1到面A1CD的距离.
(1)见解析    (2)
(1)证明:直三棱柱ABC—A1B1C1中,BC∥B1C1,
又BC平面A B1C1,B1C1平面A B1C1,∴B1C1∥平面A B1C1
(2)(解法一)∵CD⊥AB且平面ABB1A1⊥平面AB C, 
∴CD⊥平面ABB1A1,∴CD⊥AD且CD⊥A1D ,
∴∠A1DA是二面角A1—CD—A的平面角,
在Rt△ABC,AC=1,BC=,
∴AB=,又CD⊥AB,∴AC2=AD×AB
∴AD=,AA1=1,∴∠DA1B1=∠A1DA=60°,∠A1B1A=30°,∴AB1⊥A1D
又CD⊥A1D,∴AB1⊥平面A1CD,设A1D∩AB1=P,∴B1P为所求点B1到面A1CD的距离.
B1P=A1B1cos∠A1B1A= cos30°=.
即点到面的距离为
(2)(解法二)由VB1-A1CD=VC-A1B1D=××=,而cos∠A1CD=×=,
SA1CD=×××=,设B1到平面A1CD距离为h,则×h=,得h=为所求.
(3)(解法三)分别以CA、CB、CC1所在直线为x、y、z轴建立空间直角坐标系(如图)则A(1,0,0),A1(1,0,1),
C(0,0,0),C1(0,0,1),
B(0,,0),B1(0,,1),

∴D(,0)=(0,,1),设平面A1CD的法向量=(x,y,z),则
,取=(1,-,-1)
到面的距离为d= 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形是边长为的正方形,分别是边上的点(M不与AD重合),且于点,沿将正方形折成直二面角
(1)当平行移动时,的大小是否发生变化?试说明理由;
(2)当在怎样的位置时,两点间的距离最小?并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,平面M、N互相垂直,棱a上有两点A、B,AC?M,BD?N,且AC⊥a,BD⊥a,AB=12cm,AC=3cm,BD=4cm,则CD=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知点A(-3,1,4),则点A关于原点的对称点B的坐标为            ;AB的长为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量=(2,4,5),=(3,x,y),若,则(  )
A.x=6,y=15B.x=3,y=
C.x=3,y=15D.x=6,y=

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行六面体中,,则的长为(   ).
A. B. C. D.

查看答案和解析>>

同步练习册答案