精英家教网 > 高中数学 > 题目详情
11.下列函数是同一函数的是(  )
A.f(x)=$\frac{{x}^{2}-x}{x}$,g(x)=x-1B.f(u)=$\sqrt{\frac{1+u}{1-u}}$,g(v)=$\sqrt{\frac{1+v}{1-v}}$
C.f(x)=1,g(x)=x0D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

分析 逐项判断即可.两个函数相同则需定义域、值域、对应法则都相同.A、定义域不同;B、函数三要素都相同;C、定义域不同;D、对应法则不同.

解答 解:A、函数f(x)的定义域为{x|x≠0},函数g(x)的定义域为R,定义域不同,故不是相同函数;
B、两函数三要素相同,故两函数相同;
C、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},故两函数不同;
D、因为$g(x)=\sqrt{{x}^{2}}=|x|$,故两函数不同.
综上可得B项正确.
故选:B.

点评 本题考查函数的概念和函数相等的判断.正确掌握判断方法是解题关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在北纬60°圈上有A、B两点,它们的经度相差180°,A、B两地沿纬线圈的弧长与A、B两点的球面距离的比为(  )
A.3:2B.2:3C.1:3D.3:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列表示:
①{0}=∅;②∅⊆{0};③$\sqrt{3}$∈{x|x≤2};④{x∈N|$\frac{6}{6-x}$∈N}={0,2,3,4,5}中,
错误的是(  )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P是△ABC所在平面外一点,点O是点P在平面ABC上的射影,在下列条件下:P到△ABC三个顶点距离相等;P到△ABC三边距离相等;AP、BP、CP两两互相垂直,点O分别是△ABC的(  )
A.垂心,外心,内心B.外心,内心,垂心C.内心,外心,垂心D.内心,垂心,外心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=2,Sn=λan-2,其中λ为常数.
(Ⅰ)求λ的值及数列{an}的通项公式;
(Ⅱ)令bn=$\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+2}}}}$,数列{bn}的前n项和Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用max{a,b}表示a,b两个数中的较大值,设f(x)=max{2x-1,$\frac{1}{x}$}(x>0),则f(x)的最小值为(  )
A.-1B.1C.0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一条直线上有三点A,B,C,点C在点A与点B之间,P是此直线外一点,设∠BPC=β,∠APC=α,则$\frac{sin(α+β)}{PC}$=(  )
A.$\frac{sinβ}{PA}$-$\frac{sinβ}{PB}$B.$\frac{sinα}{PB}$-$\frac{sinβ}{PA}$C.$\frac{sinα}{PA}$+$\frac{sinβ}{PB}$D.$\frac{sinα}{PB}$+$\frac{sinβ}{PA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b∈[0,1],则不等式a2+b2≤1成立的概率为(  )
A.$\frac{π}{16}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知长方形ABCD中,AD=$\sqrt{2}$,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P-BCDE,如图所示.
(1)若点M为PC中点,求证:BM∥平面PDE;
(2)求证:DE⊥PC.

查看答案和解析>>

同步练习册答案