精英家教网 > 高中数学 > 题目详情

函数数学公式的单调递增区间是


  1. A.
    [-1,+∞)
  2. B.
    (-∞,-1]
  3. C.
    (1,+∞)
  4. D.
    (-∞,-3)
D
分析:先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数的单调递增区间.
解答:函数的定义域为(-∞,-3)∪(1,+∞)
令t=x2+2x-3,则y=
∵y=为减函数,t=x2+2x-3在(-∞,-3)上为减函数;在(1,+∞)为增函数
∴函数的单调递增区间是为(-∞,-3).
故选D
点评:本小题主要考查对数函数单调性的应用、二次函数单调性的应用、不等式的解法等基础知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
1
2
3
2
)
,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
3
2
1
2
),则当0≤t≤12时,动点A的纵坐标y关于 t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-x2+2lnx+8,则函数的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2|sinx|,则该函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图所示,则该函数的单调递增区间是(  )
精英家教网

查看答案和解析>>

同步练习册答案