精英家教网 > 高中数学 > 题目详情
k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个交点(  )
A.-
6
3
<k<
6
3
B.k>
6
3
或k<-
6
3
C.-
6
3
≤k≤
6
3
D.k≥
6
3
或k≤-
6
3
直线y=kx+2代入椭圆2x2+3y2=6,消去y,可得(2+3k2)x2+12kx+6=0,
∴△=144k2-24(2+3k2)=72k2-48,
∵直线y=kx+2和椭圆2x2+3y2=6有两个交点,
∴72k2-48>0,
∴k>
6
3
或k<-
6
3

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

F1(-1,0),F2(1,0),动点M满足|MF1|+|MF2|=2
2

(1)求M的轨迹C的方程;
(2)设直线l:y=
7
7
(x-1)
与曲线C交于A、B两点,求
F1A
F1B
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知
a
=(2mx,y-1),
b
=(2x,y+1)
,其中m∈R,
a
b
,动点M(x,y)的轨迹为C.
(1)求轨迹C的方程,并说明该轨迹方程所表示曲线的形状;
(2)当m=
1
8
时,设过定点P(0,2)的直线l与轨迹C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求经过点P(-1,-6)与抛物线C:x2=4y只有一个公共点的直线l方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线x=ky+3与双曲线
x2
9
-
y2
4
=1
只有一个公共点,则k的值有(  )
A.1个B.2个C.3个D.无数多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆Cl的长轴三等分,且圆C2的面积为π.椭圆Cl的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B,直线EA、EB与椭圆C1的另一个交点分别是点P、M.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)(i)设PM的斜率为t,直线l斜率为K1,求
K1
t
的值;
(ii)求△EPM面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且
PA
=
AB
,则称点P为“λ点”,那么直线l上有______个“λ点”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线C:y2=2px(p>0)的焦点为F,抛物线C上点M的横坐标为2,且|MF|=3.
(1)求抛物线C的方程;
(2)过焦点F作两条相互垂直的直线,分别与抛物线C交于M、N和P、Q四点,求四边形MPNQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线L:y=kx+1与椭圆C:ax2+y2=2(a>1)交于A、B两点,以OA、OB为邻边作平行四边形OAPB(O为坐标原点).
(1)若k=1,且四边形OAPB为矩形,求a的值;
(2)若a=2,当k变化时(k∈R),求点P的轨迹方程.

查看答案和解析>>

同步练习册答案