精英家教网 > 高中数学 > 题目详情
求经过点P(-1,-6)与抛物线C:x2=4y只有一个公共点的直线l方程.
①当斜率存在时,设直线l的方程为 y+6=k(x+1),
代入抛物线的方程可得:x2-4kx-4k+24=0,
根据判别式等于0,得16k2-4(-4k+24)=0,求得k=-3或k=2,
故方程为3x+y+9=0或2x-y-4=0;
②当斜率不存在时,直线方程为x=-1与抛物线C:x2=4y只有一个公共点.
故所求的直线方程为:x=-1,或3x+y+9=0或2x-y-4=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在椭圆
x2
16
+
y2
4
=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为(  )
A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,O为坐标原点,如果一个椭圆经过点P(3,
2
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2分别为椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左、右两个焦点,一条直线l经过点F1与椭圆交于A、B两点,且△ABF2的周长为8.
(1)求实数a的值;
(2)若l的倾斜角为
π
4
,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线y=x+1与椭圆
x2
2
+y2=1
相交于A,B两点,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过动点M(a,0)且斜率为1的直线l与抛物线y2=2px(p>0)交于不同的两点A、B,试确定实数a的取值范围,使|AB|≤2p.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个交点(  )
A.-
6
3
<k<
6
3
B.k>
6
3
或k<-
6
3
C.-
6
3
≤k≤
6
3
D.k≥
6
3
或k≤-
6
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
2
2
,A1,A2分别是椭圆C的左、右两个顶点,点F是椭圆C的右焦点.点D是x轴上位于A2右侧的一点,且满足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求椭圆C的方程以及点D的坐标;
(2)过点D作x轴的垂线n,再作直线l:y=kx+m与椭圆C有且仅有一个公共点P,直线l交直线n于点Q.求证:以线段PQ为直径的圆恒过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l:y=ax+1与双曲线3x2-y2=1有两个不同的交点,
(1)求a的取值范围;
(2)设交点为A,B,是否存在直线l使以AB为直径的圆恰过原点,若存在就求出直线l的方程,若不存在则说明理由.

查看答案和解析>>

同步练习册答案