精英家教网 > 高中数学 > 题目详情
在椭圆
x2
16
+
y2
4
=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为(  )
A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0
设以点M(1,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),
则x1+x2=2,y1+y2=2.
x12
16
+
y12
4
=1
,①
x22
16
+
y22
4
=1
,②
①-②得:
(x1+x2)(x1-x2)
16
+
(y1+y2)(y1-y2)
4
=0
又据对称性知x1≠x2
∴以点M(1,1)为中点的弦所在直线的斜率k=-
1
4

∴中点弦所在直线方程为y-1=-
1
4
(x-1),即x+4y-5=0.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

三角形ABC的两顶点A(-2,0),B(0,-2),第三顶点C在抛物线y=x2+1上,求三角形ABC的重心G的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆
x2
45
+
y2
20
=1
的第三象限内一点,且它与两焦点连线互相垂直,若点P到直线4x-3y-2m+1=0的距离不大于3,则实数m的取值范围是(  )
A.[-7,8]B.[-
9
2
21
2
]
C.[-2,2]D.(-∞,-7]∪[8,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线y=2x+b与曲线xy=2相交于A,B两点,若|AB|=5,则实数b的值是(  )
A.2B.-2C.±2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),F1、F2是其左右焦点,其离心率是
6
3
,P是椭圆上一点,△PF1F2的周长是2(
3
+
2
).
(1)求椭圆的方程;
(2)试对m讨论直线y=2x+m(m∈R)与该椭圆的公共点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的焦点为F1(-1,0)、F2(1,0),点P(-1,
2
2
)在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线E:y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求P的值.
(3)在(2)的条件下,过点F2作任意直线l与抛物线E相交于点A、B两点,则直线AF1与直线BF1的斜率之和是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

F1(-1,0),F2(1,0),动点M满足|MF1|+|MF2|=2
2

(1)求M的轨迹C的方程;
(2)设直线l:y=
7
7
(x-1)
与曲线C交于A、B两点,求
F1A
F1B
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点O,左顶点A(-2,0),离心率e=
1
2
,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当△APQ的面积S=
18
2
7
时,求直线PQ的方程;
(Ⅲ)求
OP
FP
的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求经过点P(-1,-6)与抛物线C:x2=4y只有一个公共点的直线l方程.

查看答案和解析>>

同步练习册答案