精英家教网 > 高中数学 > 题目详情
8.在△ABC中,a,b,c是△ABC的∠A,∠B,∠C的对边,且b=1,c=$\sqrt{3}$,∠C=$\frac{2}{3}$π.
(1)求cosB的值;
(2)求a的值.

分析 (1)利用正弦定理列出关系式,把b,c,sinC的值代入求出sinB的值,利用同角三角函数间的基本关系求出cosB的值即可;
(2)利用余弦定理列出关系式,把b,c,cosC的值代入计算即可求出a的值.

解答 解:(1)∵b=1,c=$\sqrt{3}$,∠C=$\frac{2}{3}$π,
∴由正弦定理$\frac{b}{sinB}$=$\frac{c}{sinC}$得:sinB=$\frac{bsinC}{c}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∵∠B为△ABC的内角,且b<c,即B<C=$\frac{2}{3}$π,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{3}}{2}$;
(2)∵b=1,c=$\sqrt{3}$,∠C=$\frac{2}{3}$π,
∴由余弦定理得:c2=a2+b2-2abcosC,即3=a2+1+a,
整理得:(a-1)(a+2)=0,
解得:a=1或a=-2(舍去),
则a的值为1.

点评 此题考查了正弦、余弦定理,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知f(x)=m(x+m+5)(x+m+3),g(x)=2x-2.若?x∈R,f(x)<0或g(x)<0,则m的取值范围是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.判定下列函数的单调性.
(1)f(x)=$\frac{1}{x-1}$,x∈(1,+∞)
(2)y=x2+1,x∈(0,+∞)
(3)y=3-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设0≤θ≤$\frac{π}{2}$,向量$\overrightarrow{a}$=(sinθ,cosθ-sinθ),$\overrightarrow{b}$=(cosθ+sinθ,1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,则θ等于(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=sin(ωx+$\frac{π}{3}$)的周期为π,f(x)在y轴右侧的第一条对称轴为x=$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用系统抽样的方法从含有51个个体的总体中抽取一个容量为5的样本,则个体m被抽到的概率为$\frac{5}{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2sinωx在一个周期内的图象如图所示,则ω等于(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$在x∈[0,+∞).
(1)判断f(x)的奇偶性;
(2)判断f(x)在x∈(0,+∞)上的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在正方体ABCD-A1B1C1D1中,M,N分别为AA1,BB1的中点.
(1)求直线CM与D1N所成角的余弦值;
(2)求直线B1M与D1N所成角的正弦值.

查看答案和解析>>

同步练习册答案