精英家教网 > 高中数学 > 题目详情
19.判定下列函数的单调性.
(1)f(x)=$\frac{1}{x-1}$,x∈(1,+∞)
(2)y=x2+1,x∈(0,+∞)
(3)y=3-2x.

分析 根据函数的性质分别进行判断即可.

解答 解:(1)f(x)=$\frac{1}{x-1}$,x∈(1,+∞)为减函数,
(2)y=x2+1,x∈(0,+∞)为增函数,
(3)y=3-2x为减函数.

点评 本题主要考查函数单调性的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}为等比数列,数列{bn}为等差数列,且a2a3=a5=32,b2+b3=b5=5.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求和Tn=b1S1+b2S2+…+bnSn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知O为坐标原点,过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=8,如果OA⊥OB,那么y1y2=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知:sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,则cos(α-β)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某班主任统计本班学生放学回家后学习时间为18时至23时,已知甲每天连续学习4时,乙每天连续学习3小时,则19时至20时甲、乙都在学习的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各三角函数的值
(1)sin$\frac{13π}{6}$;
(2)cos(-$\frac{83π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系中,点O(0,0),P(3,$\sqrt{3}$),将向量$\overrightarrow{OP}$饶点O按逆时针方向旋转$\frac{π}{2}$后得向量$\overrightarrow{OQ}$,则点Q的坐标是(  )
A.(-3,$\sqrt{3}$)B.(-$\sqrt{6}$,$\sqrt{6}$)C.(-$\sqrt{3}$,3)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,a,b,c是△ABC的∠A,∠B,∠C的对边,且b=1,c=$\sqrt{3}$,∠C=$\frac{2}{3}$π.
(1)求cosB的值;
(2)求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\root{5}{5}$,$\root{3}{3}$,$\sqrt{2}$的大小关系是$\root{3}{3}$>$\sqrt{2}$>$\root{5}{5}$.

查看答案和解析>>

同步练习册答案