【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 设AB1的中点为D,B1C∩BC1=E.
求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1 .
【答案】
(1)证明:根据题意,得;
E为B1C的中点,D为AB1的中点,所以DE∥AC;
又因为DE平面AA1C1C,AC平面AA1C1C,
所以DE∥平面AA1C1C;
(2)证明:因为棱柱ABC﹣A1B1C1是直三棱柱,
所以CC1⊥平面ABC,
因为AC平面ABC,
所以AC⊥CC1;
又因为AC⊥BC,
CC1平面BCC1B1,
BC平面BCC1B1,
BC∩CC1=C,
所以AC⊥平面BCC1B1;
又因为BC1平面BCC1B1,
所以BC1⊥AC;
因为BC=CC1,所以矩形BCC1B1是正方形,
所以BC1⊥平面B1AC;
又因为AB1平面B1AC,
所以BC1⊥AB1.
【解析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1 , 即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1 .
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对直线与平面垂直的性质的理解,了解垂直于同一个平面的两条直线平行.
科目:高中数学 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.
上图中,已知课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取的学生作为研究样本组(以下简称“组M”).
(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量表示选出的4名同学中选择课程的人数,求随机变量的分布列;
(ⅱ)设随机变量表示选出的4名同学参加科学营的费用总和,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,设ai=2m(i∈N* , 3m﹣2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12 , 则满足Si∈[1000,3000]的i的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆M:的左顶点为、中心为,若椭圆M过点,且 .
(1)求椭圆M的方程;
(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;
(3)过点作两条斜率分别为的直线交椭圆M于两点,且,求证:直线恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.
(1)按下列要求建立函数关系;
(i)设AN=x米,将S表示为x的函数;
(ii)设∠BMC=θ(rad),将S表示为θ的函数.
(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其左、右焦点分别为,左、右顶点分别为,上、下顶点分别为,四边形与四边形的面积之和为4.
(1)求椭圆的方程;
(2)直线与椭圆交于两点,(其中为坐标原点),求直线被以线段为直径的圆截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
质量指标值 | |||
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com