精英家教网 > 高中数学 > 题目详情

【题目】设直线4x﹣3y+12=0的倾斜角为A
(1)求tan2A的值;
(2)求cos( ﹣A)的值.

【答案】
(1)解:由4x﹣3y+12=0,

得:k= ,则tanA=

∴tan2A= =﹣


(2)解:由 ,以及0<A<π,

得:sinA= ,cosA=

cos( ﹣A)=cos cosA+sin sinA= × + × =


【解析】(1)求出tanA,根据二倍角公式,求出tan2A的值即可;(2)根据同角的三角函数的关系分别求出sinA和cosA,代入两角差的余弦公式计算即可.
【考点精析】认真审题,首先需要了解两角和与差的余弦公式(两角和与差的余弦公式:),还要掌握直线的倾斜角(当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C:(x﹣3)2+(y﹣4)2=5,A、B是圆C上的两个动点,AB=2,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若关于的不等式上恒成立,求的取值范围;

(2)设函数,若上存在极值,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+cx(a≠0,a∈R,c∈R),当x=1时,f(x)取得极值﹣2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值;
(3)若对任意x1、x2∈[﹣1,1],不等式|f(x1)﹣f(x2)|≤t恒成立,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 设AB1的中点为D,B1C∩BC1=E.

求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+2ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2+1<ex

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,若a1=1,anan+1=( n2 , 则满足不等式 + + +…+ + <2016的正整数n的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017湖南娄底二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?

(Ⅱ)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(Ⅲ)该企业为提高产品质量,开展了“质量提升月”活动,活动后在抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

同步练习册答案