精英家教网 > 高中数学 > 题目详情
函数y=-x2-2x+3(x∈[a,2])的最大值为
15
4
,则a的值为(  )
A.-
3
2
B.
1
2
C.-
1
2
D.
1
2
-
3
2
f(x)═-x2-2x+3的对称轴为x=-1
当a≥-1时,函数f(x)在[a,2]上单调递减,最大值为f(a)=
15
4
,解得a=-
1
2
;当a<-1时,,函数f(x)的最大值为f(-1),不满足条件
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-2x+5(x∈[-1,2])的最大值是
8
8
,最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-2x+1
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x,x∈[-2,3],则值域为
[-1,15]
[-1,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A为函数y=
x-1
x2-3x+2
的定义域,集合B为函数y=
-x2+2x+4
的值域,则A∩B=
[0,1)∪(1,2)∪(2,
5
]
[0,1)∪(1,2)∪(2,
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为(  )

查看答案和解析>>

同步练习册答案