精英家教网 > 高中数学 > 题目详情
如图所示,在斜三棱柱ABC-A1B1C1的底面△ABC中,∠A=90°,且BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H在(   )
A.直线AB上
B.直线AC上
C.直线BC上
D.△ABC内部
A
过点。因为,所以。而,所以,从而可得。由可得底面,从而重合,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如下图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为的二面角,连结PC、PD,在AD上取一点E使得3AE=ED,连结PE得到如下图(图2)的一个几何体.
(1)求证:平面PAB平面PCD;
(2)求PE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体中,分别是的中点,给出以下四个结论:
; ②//平面; ③相交; ④异面
其中正确结论的序号是    ▲  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图(1),在直角梯形ABCD中,,以DE为轴旋转至图(2)位置,F为DC的中点.     
(1)求证:平面
(2)若平面平面,且BC垂直于AE
求①二面角的大小.
②直线BF与平面ABED所成角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,边长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1B、D1C1的中点,则△AEF在面BB1D1D上的射影的面积为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD,若直线AB、AC、AD与平面BCD所成角都相等,则A点在平面BCD的射影为的(   )
A.外心               B.内心              C.重心              D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,在四棱锥中,底面是边长为的正方形,侧棱底面分别为的中点.
(Ⅰ)求证:平面平面
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图和三视图如图所示,其中分别是的中点,上的一动点.
(1)求证:
(2)当时,在棱上确定一点,使得//平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个三棱柱的直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设为线段上的点.
(1)求几何体的体积;
(2)是否存在点E,使平面平面,若存在,求AE的长.

查看答案和解析>>

同步练习册答案