【题目】在平面直角坐标系xOy中,椭圆:
的离心率为
,y轴于椭圆相交于A、B两点,
,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.
求椭圆的方程;
求直线MN的斜率.
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 已知a2=7,a3为整数,且Sn的最大值为S5 .
(1)求{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中:①“等边三角形的三个内角均为60°”的逆命题;
②“若
,则方程
有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若
,则
”的否命题.
其中真命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,点
,直线
.
(1)求与圆
相切,且与直线
垂直的直线方程;
(2)在直线
上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.
【答案】(1)
;(2)答案见解析.
【解析】试题分析:
(1)设所求直线方程为
,利用圆心到直线的距离等于半径可得关于b的方程,解方程可得
,则所求直线方程为![]()
(2)方法1:假设存在这样的点
,由题意可得
,则
,然后证明
为常数
为即可.
方法2:假设存在这样的点
,使得
为常数
,则
,据此得到关于
的方程组,求解方程组可得存在点
对于圆
上任一点
,都有
为常数
.
试题解析:
(1)设所求直线方程为
,即
,
∵直线与圆相切,∴
,得
,
∴所求直线方程为![]()
(2)方法1:假设存在这样的点
,
当
为圆
与
轴左交点
时,
;
当
为圆
与
轴右交点
时,
,
依题意,
,解得,
(舍去),或
.
下面证明点
对于圆
上任一点
,都有
为一常数.
设
,则
,
∴
,
从而
为常数.
方法2:假设存在这样的点
,使得
为常数
,则
,
∴
,将
代入得,
,即
对
恒成立,
∴
,解得
或
(舍去),
所以存在点
对于圆
上任一点
,都有
为常数
.
点睛:求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关.
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
【题型】解答题
【结束】
22
【题目】已知函数
的导函数为
,其中
为常数.
(1)当
时,求
的最大值,并推断方程
是否有实数解;
(2)若
在区间
上的最大值为-3,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知点
为直线
上一点,过点
作
的垂线与以
为直径的圆
相交于
,
两点.
(1)若
,求圆
的方程;
(2)求证:点
始终在某定圆上.
(3)是否存在一定点
(异于点
),使得
为常数?若存在,求出定点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x﹣a,g(x)=x+2.
(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求证:
中至少有一个不小于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(14分)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[
,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com