精英家教网 > 高中数学 > 题目详情
16.已知在平行四边形ABCD中,点E是边BC的中点,在边AB上任取一点F,则△ADF与△BFE的面积之比不于1的概率是$\frac{2}{3}$.

分析 根据题意,利用S△ADF:S△BFE≥1时,可得$\frac{AF}{BF}≥\frac{1}{2}$,由此结合几何概型计算公式,即可算出使△ADF与△BFE的面积之比不小于1的概率.

解答 解:由题意,S△ADF=$\frac{1}{2}$AD•AFsinA,S△BFE=$\frac{1}{2}$BE•BFsinB,
当S△ADF:S△BFE≥1时,可得$\frac{AF}{BF}≥\frac{1}{2}$,
∴△ADF与△BFE的面积之比不小于1的概率P=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题给出几何概型,求△ADF与△BFE的面积之比不小于1的概率.着重考查了三角形的面积公式和几何概型计算公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-a)e1-x,g(x)=f(x)+ae1-x-a(x-1).
(1)讨论f(x)的单调性;
(2)当a=1时,求g(x)在($\frac{3}{4}$,2)上的最大值;
(3)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λg′(x1),求实数λ的值(g′(x)为g(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD中,平面PCD⊥平面ABCD,且PD=PC=$\frac{\sqrt{2}}{2}$CD=$\frac{\sqrt{2}}{2}$BC,∠BCD=$\frac{2π}{3}$,△ABD是等边三角形,AC∩BD=E.
(1)证明:PC⊥平面PAD;
(2)求二面角P-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设点A、F(c,0)分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点、右焦点,直线$x=\frac{a^2}{c}$交该双曲线的一条渐近线于点P.若△PAF是等腰三角形,则此双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-ax+$\frac{1}{2x}$(a∈R).
(1)当a=-$\frac{3}{2}$时,求函数f(x)的单调区间和极值.
(2)若g(x)=f(x)+a(x-1)有两个零点x1,x2,且x1<x2,求证:x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x+$\frac{1}{2}$
(Ⅰ)求函数f(x)=0时x的集合;
(Ⅱ)求函数f(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一个零点是$x=\frac{π}{3}$,$x=-\frac{π}{6}$是y=f(x)的图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是(  )
A.$[{-\frac{7}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$B.$[{-\frac{5}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$
C.$[{-\frac{2}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$D.$[{-\frac{1}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某教师为了分析所任教班级某将考试的成绩,将全班同学的成绩做出了频数与频率的统计表和频率分布直方图.
分组频数频率
[50,60)30.06
[60,70)m0.10
[70,80)13n
[80,90)pq
[90,100]90.18
总计t1
(1)求表中t,q及图中a的值;
(2)该教师从这次考试成绩低于70分的学生中随机抽取3人进行面批,设X表示所抽取学生中成绩低于60分的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆M:x2+y2+2y-7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案