精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知
1)若,求方程的解;
2)若对上有两个零点,求的取值范围.

(1)。(2)

解析试题分析:(1)当k=2时, 
① 当时,≥1或≤-1时,方程化为2
解得,因为,舍去,所以
②当时,-1<<1时,方程化为,解得
由①②得当k=2时,方程的解所以
(II)解:不妨设0<x1<x2<2,
因为
所以在(0,1]是单调函数,故=0在(0,1]上至多一个解,
若1<x1<x2<2,则x1x2=-<0,故不符题意,因此0<x1≤1<x2<2.
, 所以
, 所以
故当时,方程在(0,2)上有两个解.
考点:含绝对值的函数性质;一元二次函数的性质;函数的零点。
点评:本题主要考查方程的根与函数的零点的关系,以及分类讨论的数学思想。含绝对值的有关问题,常要分类讨论,在分类讨论时,要做到不重不漏。同时也考查了学生分析问题、解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若,求的单调区间;
(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。
(1)解关于的不等式
(2)当时,总有恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知:
(1)求的取值范围;
(2)求函数的最大值和最小值及对应的x值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数=(ex-1)。
(1)求的定义域;
(2)判断函数的增减性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
定义在上的函数满足,且当时,
(1)求上的表达式;
(2)若,且,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每个涨价1元,其销售量就减少10个,为了取得最大利润,每个售价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知不等式的解集为,不等式的解集为
(1)求
(2)若不等式的解集为,求不等式的解集。

查看答案和解析>>

同步练习册答案