精英家教网 > 高中数学 > 题目详情

【题目】①回归分析中,相关指数的值越大,说明残差平方和越大;

②对于相关系数越接近1,相关程度越大,越接近0,相关程度越小;

③有一组样本数据得到的回归直线方程为,那么直线必经过点

是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合;

以上几种说法正确的序号是__________

【答案】②③④.

【解析】分析:根据回归直线方程与独立性检验的实际意义作出判断.

详解:在回归分析中,相关指数越大,残差平方和越小,回归效果就越好,错误;

在回归分析中,相关指数的绝对值越接近于1,相关程度就越大,正确

回归直线必经过样本中心点,③正确;

是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合,正确.

故答案为②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中, 已知圆 ,椭圆 为椭圆右顶点.过原点且异于坐标轴的直线与椭圆交于两点,直线与圆的另一交点为,直线与圆的另一交点为,其中.设直线的斜率分别为

1)求的值;

2)记直线的斜率分别为,是否存在常数,使得?若存在,求值;若不存在,说明理由;

3)求证:直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别是的中点,则下列说法正确的是( )

A. B. 所成角为

C. 平面 D. 与平面所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“作品获得一等奖”; 乙说:“作品获得一等奖”;

丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.

(1)证明:AC1⊥平面A1BC;
(2)求三棱锥B﹣A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若a,b,c∈R,f(a),f(b),f(c)为某一个三角形的边长,则实数m的取值范围是(
A.[ ,1]
B.[0,1]
C.[1,2]
D.[ ,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.

(1)若甲投篮3次,求至少命中2次的概率;

(2)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案