精英家教网 > 高中数学 > 题目详情
9.从甲乙丙等10名学生中选派4人参加某项活动,若甲入选则乙一定入选,若甲不入选则丙一定入选,则共有84种选派方案.

分析 根据分类计数原理可得

解答 解:第一类,甲入选,有C82=28种,
第二类,甲不入选,有C83=56种,
根据分类计数原理可得28+56=84种,
故选:84

点评 本题考查了分类计数原理,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.7人站成一排,求满足下列条件的不同站法:
(1)甲、乙两人相邻;
(2)甲、乙之间隔着2人;
(3)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变;
(4)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法;
(5)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=sin2(x+$\frac{π}{4}$)的单调递增区间是(  )
A.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)B.(kπ-$\frac{π}{2}$,kπ)((k∈Z)C.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)((k∈Z)D.(kπ,kπ+$\frac{π}{2}$)((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为25万元和10万元,采用相应预防措施后此突发事件不发生的概率为0.1和0.15.若预防方案允许甲、乙两种预防措施单独采用或联合采用(甲乙两种预防措施相互独立)
(1)若不采用预防措施,求损失的费用值;
(2)请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一根绳子长为5米,若将其剪为两段,则其中一段大于3米的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14. 如图,在正四棱柱ABCD-A1B1C1D1中,AA1=6,AB=2,M,N分别是棱B1B,BC的中点.
(1)用向量方法证明:A1M∥平面D1AN;
(2)求A1D1与平面D1AN所成角的正弦值;
(3)在平面AA1B1B内是否存在一点P,使得PD⊥平面D1AN?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2是椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左、右焦点,直线l经过F2与椭圆C交于A,B,则△ABF1的周长是8,椭圆C的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:方程x2+m2y2=1表示焦点在y轴上的椭圆,命题q:在平面直角坐标系xOy中,圆x2+y2=4上至少有三个点到直线3x-4y+m-5=0的距离为1,若p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做了10次和 15次试验,并且利用最小二乘法,求得回归方程所对应的直线分别为l1:y=0.7x-0.5和l2:y=0.8x-1,则这两个人在试验中发现对变量x的观测数据的平均值S与对变量y的观测数据的平均值t的和是8.

查看答案和解析>>

同步练习册答案