精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)满足f(x+4)=f(x),且当x∈[-3,0]时,f(x)=log3(1-x3),则f(10)=
 
分析:依题意知,偶函数f(x)是以4为周期的函数,由x∈[-3,0]时,f(x)=log3(1-x3)即可求得f(10).
解答:解:∵f(x+4)=f(x),
∴f(x)是以4为周期的函数,
又f(-x)=f(x),x∈[-3,0]时,f(x)=log3(1-x3)
∴f(10)=f(2×4+2)=f(2)=f(-2)=log3[1-(-2)3]=log39=2.
故答案为:2.
点评:本题考查抽象函数及其应用,着重考查函数的周期性与奇偶性的应用,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)满足f(x+2)•f(x)=1对于x∈R恒成立,且f(x)>0,则f(119)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足f(2+x)=f(2-x),且f(x)是偶函数,当x∈[0,2]时,f(x)=2x-1,则x∈[-4,0]时f(x)的表达式f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)满足f(x+2)=xf(x)(x∈R),则f(1)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)满足f(x+2)=f(-x),当x∈[0,2]时,f(x)=2x2,则f(2011)为(  )

查看答案和解析>>

同步练习册答案