精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的两根分别为x1、x2,且0<x1<1<x2,则
b
a
的取值范围是(  )
A、[-2,-
1
2
]
B、(-2,-
1
2
]
C、[
1
2
,2]
D、(
1
2
,2)
考点:函数的零点与方程根的关系
专题:数形结合,不等式的解法及应用
分析:先根据方程根的分布得出关于a,b的约束条件,再由约束条件画出可行域,明确目标函数的几何意义求最值即可.
解答: 解:设f(x)=x2+(1+a)x+1+a+b,
由题意得:
f(0)>0
f(1)<0

1+a+b>0
2a+b+3<0   

其对应的平面区域如图阴影示:
目标函数
b
a
表示阴影区域上一点与原点连线的斜率.
当连线OQ经过点A(-2,1)时,
b
a
最大是-
1
2

当连线OQ平行于直线2a+b+3=0时,直线OQ的斜率是-2,
b
a
的取值范围是(-2,-
1
2
].
故选B.
点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,三个二次之间的关系,线性规划,构建不等式,明确目标函数的几何意义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了实现长沙经济区域一体化战略,湖南省政府计划对长沙市周边如图所示的A,B,C,D,E,F,G,H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取3个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为(  )
A、
3
8
B、
5
28
C、
5
13
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为
3
5
,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为
5
的等腰三角形,AC∩BD=O.
(1)求二面角V-AB-C的大小
(2)求点O到平面VAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2=1,则
y+2
x+1
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x-
1
x
的零点所在区间为(  )
A、(0,
1
6
)
B、(
1
6
1
3
)
C、(
1
3
1
2
)
D、(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程是:x2+y2=4,P是圆C上任意一点,过点P作PD⊥x轴于点D,M为PD的中点.
(1)求点M的轨迹E的方程;
(2)若直线l与轨迹E交于A(x1,y1),B(x2,y2)两点,已知
m
=(x1,2y1),
n
=(x2,2y2)
,若
m
n
.试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

i
1+i
(其中i是虚数单位)是实系数方程2x2-mx+n=0的一个根,求|m+ni|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)解不等式x|x-1|-2<|x-2|;
(2)已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

同步练习册答案