精英家教网 > 高中数学 > 题目详情
甲、乙两人玩猜数字游戏,规则如下:
①连续竞猜3次,每次相互独立;
②每次竞猜时,先由甲写出一个数字,记为a,再由乙猜甲写的数字,记为b,已知ab∈{0,1,2,3,4,5},若|ab|≤1,则本次竞猜成功;
③在3次竞猜中,至少有2次竞猜成功,则两人获奖.
求甲乙两人玩此游戏获奖的概率.
由题意基本事件的总数为×=36(个),记事件A为“甲乙两人一次竞猜成功”,若|ab|=0,则共有6种竞猜成功;若|ab|=1,a=1,2,3,4时,b分别有2个值;而a=0或5时,b只有一种取值.
利用古典概型的概率计算公式即可得出P(A)=.
设随机变量X表示在3次竞猜中竞猜成功的次数,则甲、乙两人获奖的概率P(X≥2)=1-P(X=0)-P(X=1)=1-×0312.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:
统计信息
汽车行驶路线
在不堵车的情况下到达城市乙所需时间(天)
在堵车的情况下到达城市乙所需时间(天)
堵车的概率
运费(万元)
公路1
2
3

1.6
公路2
1
4

0.8
(I)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为(单位:万元),求的分布列和数学期望
(II)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃)
t22℃
22℃< t28℃
28℃< t  32℃

天数
6
12


由于工作疏忽,统计表被墨水污染,数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
(Ⅰ) 若把频率看作概率,求的值;
(Ⅱ) 把日最高气温高于32℃称为本地区的 “高温天气”,根据已知条件完成下面列联表,并据此你是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
 
高温天气
非高温天气
合计
旺销
1
 
 
不旺销
 
6
 
合计
 
 
 
附:  

0.10
0.050
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连掷两次骰子得到的点数分别为mn,记向量a=(mn)与向量b=(1,-1)的夹角为θ.则θ的概率是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①记“ab=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数xy,求事件“x2y2>(ab)2恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连续向一目标射击,直至击中为止,已知一次射击命中目标的概率为则射击次数为3的概率为   (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列叙述随机事件的频率与概率的关系中,说法正确的是(  )
A.频率就是概率
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增多,频率越来越接近概率
D.概率是随机的,在试验前不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果随机变量XN(-1,σ2),且P(-3≤X≤-1)=0.4,则P(X≥1)=(  )
A.0.4 B.0.3C.0.2 D.0.1

查看答案和解析>>

同步练习册答案