精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1的底面ABC是等腰直角三角形,AB=AC=1,侧棱AA1⊥底面ABC,且AA1=2,E是BC的中点.
(1)求异面直线AE与A1C所成角的余弦值;
(2)求直线A1C与平面BCC1B1所成角的正切值.
考点:异面直线及其所成的角,直线与平面所成的角
专题:空间位置关系与距离
分析:(1)取B1C1的中点E1,连A1E1,则A1E1∥AE,即∠CA1E1即为异面直线AE与A1C所成的角θ,连结E1C,解三角形可得异面直线AE与A1C所成角θ的大小.
(2)由(1)知A1H⊥平面BCC1B1,得到∠A1CH是直线A1C与平面BCC1B1所成角,在直角三角形中计算.
解答: 解:(1)三棱柱ABC-A1B1C1中,取C1B1的中点H,连A1H与HC,
∵E是BC的中点∴A1H∥AE,∠CA1H是异面直线AE与A1C所成角,
∵底面ABC是等腰直角三角形,E是BC的中点,
∴AE⊥BC,
∴A1H⊥BC,
∵侧棱AA′⊥底面ABC,
∴侧棱B1B⊥A1H,
∴A1H⊥平面BCC1B1,∴A1H⊥HC,
在Rt△A1HC中,
cos∠CA1H=
A 1H
A1C
=
2
2
5
10
10
;              (6分)
(2)由(1)知A1H⊥平面BCC1B1
A1C在平面BCC1B1上的射影是HC,
∴∠A1CH是直线A1C与平面BCC1B1所成角,
在Rt△A1HC中  tan∠A1CH=
A1H
BC
=
2
2
3
2
2
=
1
3
.            (12分)
点评:本题考查的知识点是异面直线及其所成的角以及线面角的三角函数值的求法,关键是正确找出平面角,利用平面几何的知识解答,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=ln
3ex+2

(2)y=(2x3-x+
1
x
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个数50.6,0.65,log0.65的大小顺序是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-x2)(x2+ax+b)(x∈R),若f(x-1)是偶函数,则f(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的斜率为k,倾斜角是α,-1<k<1,则α的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别为a,b,c,且B=60°,2b2=3ac,则角A的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线m,n是异面直线,则过直线n且与直线m垂直的平面有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x和g(x)=x3的图象的示意图如下图所示.设两个函数的图象交于点A(x1,y1),B,2,y2)且x1<x2
(1)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,910,11,12},指出a,b的值,并说明理由;
(2)结合函数图象示意图,请把f(6),g(6),f(2007),g(2007)四个数按从小到大的顺序排列.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
均为单位向量,且
a
b
=0,(
a
+
b
)•
c
c
2
,则|
a
+
b
+
c
|的最小值为(  )
A、
2
-1
B、1
C、
2
+1
D、2

查看答案和解析>>

同步练习册答案