精英家教网 > 高中数学 > 题目详情
19.已知菱形ABCD中,∠A=$\frac{π}{3}$,AB=1,E为BC边上任一点,则$\overrightarrow{AE}$•$\overrightarrow{EC}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{9}{16}$C.$\frac{2}{3}$D.$\frac{3}{5}$

分析 以A为原点,以AB所在的直线为x轴,建立如图所示的坐标系,再设设$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,(0≤λ≤1)E的坐标为(x,y),用λ表示x,y,再根据向量的数量积和二次函数的性质即可求出.

解答 解:以A为原点,以AB所在的直线为x轴,
建立如图所示的坐标系,
∴B(1,0),A(0,0)
∵菱形ABCD中,∠A=$\frac{π}{3}$,AB=1,
∴CF=$\frac{\sqrt{3}}{2}$,BF=$\frac{1}{2}$,
∴C($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
设$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,(0≤λ≤1)E的坐标为(x,y),
∴(x-1,y)=λ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
∴x=1+$\frac{1}{2}$λ,y=$\frac{\sqrt{3}}{2}$λ,
∴$\overrightarrow{AE}$•$\overrightarrow{EC}$=(1+$\frac{1}{2}$λ,$\frac{\sqrt{3}}{2}$λ)•($\frac{1}{2}$-$\frac{1}{2}$λ,$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$λ)
=-λ2+$\frac{1}{2}λ$+$\frac{1}{2}$=-(λ-$\frac{1}{4}$)2+$\frac{9}{16}$,
故当λ=$\frac{1}{4}$时,有最大值,即为$\frac{9}{16}$,
故选:B

点评 本题考查了向量的坐标运算和向量的数量积以及二次函数求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若存在$x∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(1-x)(2x+1)5中,x3项的系数为40.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,AP=AB=AC=a,$AD=\sqrt{2}a$,PA⊥底面ABCD.
(1)求证:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一点E,使得二面角B-AE-D的平面角的余弦值为$-\frac{{\sqrt{6}}}{3}$?若存在,求出$λ=\frac{CE}{CP}$的值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l与曲线M(x0,y0)满足下列两个条件:
(1)直线l在点M(x0,y0)处与曲线C相切;
(2)曲线C在点M附近位于直线l的两侧,则称直线l在点M处“内切”曲线C.
下列命题正确的是①②(写出所有正确命题的编号)
①直线l:y=0在点M(0,0)处“内切”曲线C:y=x3
②直线l:y=x在点M(0,0)处“内切”曲线C:y=sinx
③直线l:y=x-1在点M(1,0)处“内切”曲线C:y=lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若sinθ=-$\frac{1}{3}$,tanθ>0,则cosθ=$-\frac{2\sqrt{2}}{3}$,tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,F,H分别为AB,PC,BC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PAH⊥平面DEF;
(Ⅲ)若二面角P-CD-B的平面角为45°,求PD与平面PAH所成的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x||x-1|<1},N={x|x<2},则M∩N=(  )
A.(-1,1)B.(-1,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案