【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=
,求三棱锥E-ACD的体积
【答案】![]()
【解析】
试题(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积
试题解析:(1)证明:连接BD交AC于点O,连接EO.
因为ABCD为矩形,所以O为BD的中点.
又E为PD的中点,所以EO∥PB.
因为EO平面AEC,PB平面AEC,
所以PB∥平面AEC.
(2)因为PA⊥平面ABCD,ABCD为矩形,
所以AB,AD,AP两两垂直.
如图,以A为坐标原点,
,AD,AP的方向为x轴y轴z轴的正方向,|
|为单位长,建立空间直角坐标系Axyz,则D
,E
,
=
.
![]()
设B(m,0,0)(m>0),则C(m,
,0),
=(m,
,0).
设n1=(x,y,z)为平面ACE的法向量,
则
即![]()
可取n1=
.
又n2=(1,0,0)为平面DAE的法向量,
由题设易知|cos〈n1,n2〉|=
,即
=
,解得m=
.
因为E为PD的中点,所以三棱锥EACD的高为
.三棱锥EACD的体积V=
×
×
×
×
=
.
科目:高中数学 来源: 题型:
【题目】《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=
(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长为
的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中
,
)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
= (1,2sinθ),
= (sin(θ+
),1),θ
R。
(1) 若
⊥
,求 tanθ的值;
(2) 若
∥
,且 θ
(0,
),求 θ的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频数 | 40 | 20 |
| 10 |
|
已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.
(Ⅰ)求上表中
的值;
(Ⅱ)若以频率作为概率,求事件
:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率
;
(Ⅲ)求Y的分布列及数学期望EY.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
![]()
(1)在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数
与进店人数
是否线性相关?(给出判断即可,不必说明理由)
(2)建立
关于
的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数).
参考数据:
,
,
,
,
,
.
参考公式:回归方程
,其中
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“红灯停,绿灯行”,这是我们每个人都应该也必须遵守的交通规则.凑齐一拨人就过马路﹣﹣不看交通信号灯、随意穿行交叉路口的“中国式过马路”不仅不文明而且存在很大的交通安全隐患.一座城市是否存在“中国式过马路”是衡量这座城市文明程度的重要指标.某调查机构为了了解路人对“中国式过马路”的态度,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此列联表数据判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(2)若从这30人中的女性路人中随机抽取2人参加一项活动,记反感“中国式过马路”的人数为X,求X的分布列及其数学期望.
附:
,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
函数
的最大值为1;
“
,
”的否定是“
”;
若
为锐角三角形,则有
;
“
”是“函数
在区间
内单调递增”的充分必要条件.
其中错误的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对称轴为坐标轴的椭圆
的焦点为
,
,
在
上.
(1)求椭圆
的方程;
(2)设不过原点
的直线
与椭圆
交于
,
两点,且直线
,
,
的斜率依次成等比数列,则当
的面积为
时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com